S. Manabe et al. / Tetrahedron Letters 49 (2008) 5159–5161
5161
OAc
BnO
O
O
HO
OPEG
BnO
BnO
O
OAc
BnO
BnO
O
ii), iii)
11
O
O
BnO
BnO
O
O
SPh
i)
BnO
BnO
10
12
13
BnO
O
BnO
O
O
O
BnO
BnO
BnO
BnO
BnO
BnO
iv), v)
vi)
O
O
O
O
OPEG
BnO
O
BnO
OH
BnO
BnO
14
15
Scheme 2. Polymer-supported disaccharide synthesis. Reagents and conditions: (i) NIS, TfOH, CH2Cl2, À40 °C, 30 min, quant.; (ii) NaOMe, MeOH, rt, 2 h, 93%; (iii) MPEG-Br,
Cs2CO3, CH3CN, 14 h, 80 °C, 92%; (iv) SmI2, i-PrNH2, H2O, THF, rt, 15 min, 63%; (v) 6, NIS, TfOH, CH2Cl2, À40 °C, 8 h, 94%; (vi) TFA:CH2Cl2 1:4, rt, 1 h, 64%.
2. (a) Paulsen, H. Angew. Chem., Int. Ed. 1982, 21, 155; (b) Andrews, C. W.;
Again, the propargyl group was deprotected by the SmI2–i-PrNH2–
H2O system within 15 min in 63% yield. Glycosylation with 10 was
Rodebaugh, R.; Frase-Reid, B. J. Org. Chem. 1996, 61, 5280; (c) Zhang, Z.; Ollman,
I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121,
carried out and the disaccharide 15 (newly formed glycosyl bond,
:b 1:1) was obtained in 64% yield after cleavage from PEG
(Scheme 2).
Although the mechanism of this reaction is not yet clear,16
novel methodology for the rapid reductive deprotection of propar-
gyl groups has been developed. The methodology was found to be
useful in the construction of simple molecules as well as in oligo-
saccharide synthesis. Our method was effective for both alkyl and
aryl propargyl groups, and was operationally simple.
General procedure for deprotection of propargyl ether: Freshly
prepared SmI2 solution17 (ca. 0.1 M THF solution, 10 equiv) was
added to a mixture of propargyl ether (1 equiv) and i-PrNH2
(40 equiv). Commercially available SmI2 could also be used. H2O
(30 equiv) was added dropwise at room temperature under Ar
atmosphere. The mixture was stirred and the reaction progress
was monitored by TLC at room temperature. After the reaction
was completed, the mixture was quenched with 10% aq citric acid.
The aqueous layer was extracted with CHCl3. The combined layers
were washed with water and brine. After drying the extract over
MgSO4, the solvent was evaporated. The residue was purified by
silica gel column chromatography.
734.
3. (a) Crich, D.; Jayalath, P. Org. Lett. 2005, 7, 2277; (b) Crich, D.; Jayalath, P.;
Hutton, T. K. . J. Org. Chem. 2006, 71, 3064.
4. Hotha, S.; Kashyap, S. J. Am. Chem. Soc. 2006, 128, 9620.
5. (a) Zhang, H. X.; Guibé, F.; Balavoine, G. Tetrahedron Lett. 1988, 29, 619; For
deprotection of aromatic O/N propargyl bonds: (b) Pal, M.; Parasuraman, K.;
Yeleswarapu, K. R. Org. Lett. 2003, 5, 349.
6. Punna, S.; Meunier, S.; Finn, M. G. Org. Lett. 2004, 6, 2777.
7. Nayak, S. K.; Kadam, S. M.; Banerji, A. Synlett 1993, 581.
a
a
8. Olivero, S.; Duñach, E. Tetrahedron Lett. 1997, 38, 6193.
9. (a) Swamy, V. M.; Ilankumaran, P.; Chandrasekaran, S. Synlett 1997, 513; (b)
Prabhu, K. R.; Devan, N.; Chandrasekaran, S. Synlett 2002, 1762.
10. Mareyala, H. B.; Gurrala, S. R.; Mohan, S. K. Tetrahedron 1999, 55, 11331.
11. (a) Dahlén, A.; Hilmersson, G. Tetrahedron Lett. 2002, 43, 7197; (b) Kim, M.;
Knettle, B. W.; Dahlén, A.; Hilmersson, G.; Flowers, R. A., III. Tetrahedron 2003,
59, 10397; (c) Dahlén, A.; Hilmersson, G. Tetrahedron Lett. 2003, 44, 2661; (d)
Dahlén, A.; Hilmersson, G.; Knettle, B. W.; Flowers, R. A., III. J. Org. Chem. 2003,
68, 4870; (e) Dahlén, A.; Nilsson, A.; Hilmersson, G. J. Org. Chem. 2006, 71,
1571.
12. (a) Kamochi, Y.; Kudo, T. Chem. Lett. 1991, 893; (b) Kamochi, Y.; Kudo, T.
Tetrahedron Lett. 1991, 32, 3511.
13. Ernst, A.; Gobbi, L.; Vesella, A. Tetrahedron Lett. 1996, 37, 7959.
14. Although there was a possibility of deprotection of silyl and germanium
substituents at alkyne termini under these conditions, the substrates 1b and 1c
were stable under the conditions without SmI2 (0.1 M substrate in THF,
40 equiv of i-PrNH2, 30 equiv of H2O).
15. (a) Ando, H.; Manabe, S.; Nakahara, Y.; Ito, Y. J. Am. Chem. Soc. 2001, 123, 3848;
(b) Ando, H.; Manabe, S.; Nakahara, Y.; Ito, Y. Angew. Chem., Int. Ed. 2001, 40,
4725; (c) Hanashima, S.; Manabe, S.; Ito, Y. Synlett 2003, 979; (d) Hanashima,
S.; Manabe, S.; Inamori, K.-i.; Taniguchi, N.; Ito, Y. Angew. Chem., Int. Ed. 2004,
43, 5674; (e) Hanashima, S.; Manabe, S.; Ito, Y. Angew. Chem., Int. Ed. 2005, 44,
4218; (f) Manabe, S.; Ueki, A.; Ito, Y. Chem. Comm. 2007, 3673; (g) Ito, Y.;
Manabe, S. In Comprehensive Glycoscience—From Chemistry to Systems Biology I;
Kamerling, J. P., Boons, G.-J., Lee, Y. C., Suzuki, A., Taniguchi, N., Voragen, A. G. J.,
Eds.; Elsevier: Oxford, 2007; Vol. I, pp 335–378.
Acknowledgments
We thank Ms. A. Takahashi for her technical assistance. S.M.
thanks the JSPS for a Grant-in Aid for Scientific Research (C) (Grant
No. 19590032).
16. Mechanistic study for SmI2–amine–water reduction system: (a) Chopade, R. R.;
Prasad, E.; Flowers, R. A., II. J. Am. Chem. Soc. 2004, 126, 44; (b) Dahlén, A.;
Hilmersson, G. J. Am. Chem. Soc. 2005, 127, 8340.
References and notes
17. Concellón, J. M.; Rodríguez-Solla, H.; Bardales, E.; Huerta, M. Eur. J. Org. Chem.
2003, 1775–1778.
1. Greene, T. M. Protective Groups in Organic Synthesis, 4th ed.; John Wiley & Sons:
New York, 2006.