C O M M U N I C A T I O N S
Table 2. Hydrogenative Coupling of Vinyl Azines 1b-1d to
N-Toluenesulfonyl Aldimines 2f, 2i, and 2k
C-C coupling, byproduct-free protocols for the coupling of diverse
unsaturated feedstocks will be achieved.
Acknowledgment. Acknowledgment is made to Merck, the
Robert A. Welch Foundation, the ACS-GCI Pharmaceutical Round-
table, and the NIH-NIGMS (RO1-GM069445) for partial support
of this research. Dr. Oliver Briel of Umicore is thanked for the
generous donation of [Rh(cod)2]BARF.
Supporting Information Available: Experimental procedures and
spectral data for new compounds. Single crystal X-ray diffraction data
for compounds 3a and 3f. This material is available free of charge Via
References
(1) For an excellent review, see: (a) Carey, J. S.; Laffan, D.; Thomson, C.;
Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337.
(2) Bonnet, V.; Mongin, F.; Tre´court, F.; Breton, G.; Marsais, F.; Knochel,
P.; Que´guiner, G. Synlett 2002, 1008. As stated in ref 1 of the preceding
article, “according to the MDL Drug Data Report, the most widespread
heterocycles in pharmaceutically active compounds are pyridine (out of
15 000 structures), imidazole (out of 11 000), indole (out of 6700), and
pyrimidine (out of 4500).”
(3) Campeau, L.-C.; Fagnou, K. Chem. Soc. ReV. 2007, 36, 1058.
(4) (a) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2007,
129, 5332. (b) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc.
2008, 130, 2448.
a Cited yields are of isolated diastereomeric mixtures. Standard
conditions employ 3 equiv of 1b-1d and 1 equiv of imines 2f, 2i, and
2k. See Supporting Information for further details. b Reaction was
performed using 7.5 mol% [Rh(cod)2]BARF and 18 mol% (2-Fur)3P.
(5) (a) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Mart´ın-Matute, B. J. Am.
Chem. Soc. 2001, 123, 5358. (b) Lautens, M.; Yoshida, M. Org. Lett. 2002,
4, 123. (c) Lautens, M.; Yoshida, M. J. Org. Chem. 2003, 68, 762.
(6) (a) Selimov, F. A.; Ptashko, O. A.; Fatykhov, A. A.; Khalikova, N. R.;
Dzhemilev, U. M. Russ. Chem. Bull. 1993, 42, 913. (b) Lim, Y.-G.; Kang,
J.-B.; Kim, Y.-H. Chem. Commun. 1996, 585. (c) Lim, Y.-G.; Kang, J.-B.;
Kim, Y. H. J. Chem. Soc., Perkin Trans. 1 1998, 699. (d) Lim, Y.-G.;
Han, J.-S.; Kang, J.-B. Bull. Korean Chem. Soc. 1998, 19, 1143. (e) Lim,
Y.-G.; Kang, J.-B.; Koo, B. T. Tetrahedron Lett. 1999, 40, 7691. (f) Lim,
Y.-G.; Han; Jong-Soo; Koo, Bon Tak.; Kang, Jung-Bu. Bull. Korean Chem.
Soc. 1999, 20, 1097. (g) Lim, Y.-G.; Kang, J.-B.; Lee, K.; Kim, Y. H.
Heteroatom Chem. 2002, 13, 346. (h) A¨ıssa, C.; Fu¨rstner, A. J. Am. Chem.
Soc. 2007, 129, 14836.
Table 3. Hydrogenative Coupling of Vinyl Azine 1e to
N-Toluenesulfonyl Aldimines 2e, 2f, 2i, and 2ka
(7) Vinylpyridines engage in highly branch-selective hydroformylation: Set-
tambolo, R.; Pucci, S.; Bertozzi, S.; Lazzaroni, R. J. Organomet. Chem.
1995, 489, C50. (b) Botteghi, C.; Marchetti, M.; Paganelli, S.; Sechi, B. J.
Mol. Catal. 1997, 118, 173.
(8) For Heck reactions of 2-vinylpyridine, see: (a) Kasahara, A.; Izumi, T.;
Takeda, T.; Imamura, H. Bull. Chem. Soc. Jpn. 1974, 47, 183. (b) Berthiol,
F.; Doucet, H.; Santelli, M. Synlett 2003, 841. (c) Narahashi, H.; Yamamoto,
A.; Shimizu, I. Chem. Lett. 2004, 33, 348.
(9) For ruthenium catalyzed cross-metathesis reactions of vinylpyridine, see:
(a) Chatterjee, A. K.; Toste, F. D.; Choi, T.-L.; Grubbs, R. H. AdV. Synth.
Catal. 2002, 344, 634.
(10) For selected reviews of hydrogenative C-C coupling, see: (a) Ngai, M.-
Y.; Kong, J.-R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063. (b) Iida, H.;
Krische, M. J. Top. Curr. Chem. 2007, 279, 77. (c) Skucas, E.; Ngai, M.-
Y.; Komanduri, V.; Krische, M. J. Acc. Chem. Res. 2007, 40, 1394.
(11) (a) Hong, Y.-T.; Barchuk, A.; Krische, M. J. Angew. Chem., Int. Ed 2006,
128, 6885. (b) See also: Kokubo, K.; Miura, M.; Nomura, M. Organome-
tallics 1995, 14, 4521.
a Cited yields are of isolated material. Standard conditions employ 3
equiv of 1e and 1 equiv of imine. See Supporting Information for
further details.
(12) For hydrogen-mediated reductive aldol addition, see: (a) Jang, H. Y.;
Huddleston, R. R.; Krische, M. J. J. Am. Chem. Soc. 2002, 124, 15156. (b)
Huddleston, R. R.; Krische, M. J. Org. Lett. 2003, 5, 1143. (c) Koech,
P. K.; Krische, M. J. Org. Lett. 2004, 6, 691. (d) Marriner, G. A.; Garner,
S. A.; Jang, H. Y.; Krische, M. J. J. Org. Chem. 2004, 69, 1380. (e) Jung,
C. K.; Garner, S. A.; Krische, M. J. Org. Lett. 2006, 8, 519. (f) Han, S. B.;
Krische, M. J. Org. Lett. 2006, 8, 5657. (g) Jung, C. K.; Krische, M, J.
J. Am. Chem. Soc. 2006, 128, 17051. (h) Bee, C.; Han, S. B.; Hassan, A.;
Iida, H.; Krische, M. J. J. Am. Chem. Soc. 2008, 130, 2747.
(13) For hydrogen-mediated reductive Mannich addition, see: (a) Garner, S. A.;
Krische, M. J. J. Org. Chem. 2007, 72, 5843.
(14) For tri-2-furylphosphine and triphenylarsine effects in metal catalyzed
reactions, see: (a) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113,
9585. (b) Farina, V. Pure Appl. Chem. 1996, 68, 73. (c) Anderson, N. G.;
Keay, B. A. Chem. ReV. 2001, 101, 997.
In summary, we report the first metal catalyzed reductive C-C
coupling of vinyl azines. By simply hydrogenating vinyl azines
1a-1e in the presence of N-arylsulfonyl aldimines 2a-2l, one gains
access to the branched products of reductive coupling 3a-3v, which
appear as single regioisomers. Using a rhodium catalyst ligated by
tri-2-furylphosphine, modest to high levels of syn-diastereoselec-
tivity may be achieved. Future studies will focus on the development
of enantioselective variants of this process and related vinyl azine-
carbonyl reductive couplings. Ultimately, through hydrogenative
(15) In the rhodium catalyzed hydrogenative coupling of vinyl ketones to
aldehydes and imines (refs 12e-h, 13), Fur3P enforces high levels of syn-
diastereoselectivity. Given the structural homology of vinyl ketones and
2-vinyl azines, it is not surprising that analogous ligand effects are observed.
(16) Coupling of 2,3-diphenyl-5-vinylpyrazine to imine 2f under standard
conditions provides the branched adduct in 35% yield and 5:1 dr.
(17) The stoichiometric reaction of isolated rhodacyclopentadienes with elemental
hydrogen delivers the product of hydrogenolysis: Mu¨ller, E.; Thomas, R.;
Zountsas, G. Liebigs Ann. Chem. 1972, 758, 16.
JA805056G
9
J. AM. CHEM. SOC. VOL. 130, NO. 38, 2008 12593