Organic Letters
Letter
Notes
In addition, the other nitroacrylates, with either electron-
donating or electron-withdrawing groups at the para position of
the benzene ring, were well tolerated. Compound 1h was
hydrogenated with excellent stereocontrol in nearly quantitative
yields (94% yield and 96% ee). The alkyl-substituted β-
nitroacrylates (E)-1l and (Z)-1l were also tested and hydro-
genated smoothly with useful enantioselectivity (Figure 5, 1l).
The effect of different ester groups was also taken into
consideration, and the ester group can be varied significantly as
probed with α-phenyl substituted β-nitroacrylates (1a, 1i−k),
while prolongation is necessary for full conversion. The
enantioselectivity increased slightly with size and bulkiness of
the ester moiety and followed the trend CH3 < Et < Bn < iPr.
Gratifyingly, nitroacrylate 1j was successfully hydrogenated in
high yield with almost complete stereocontrol; this is the highest
enantioselectivity achieved among different reduction tactics of
nitroacrylates.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the National Natural
Science Foundation of China (No. 31401777), the Natural
Science Foundation of Jiangsu Province (No.BK20140684), and
the Fundamental Research Funds for the Central Universities
(No. KJQN201510). We also thank Dr. Kexuan Huang of
Rutgers University for helpful discussions.
DEDICATION
■
This paper is dedicated to Prof. Wenjun Wu of Northwest A&F
University on the occasion of his 70th birthday.
REFERENCES
■
(1) Kudo, F.; Miyanaga, A.; Eguchi, T. Nat. Prod. Rep. 2014, 31, 1056−
1073.
The synthetic potential of this method was demonstrated by
the direct preparation of free chiral β2-amino acid (3-amino-2-
phenylpropanoic acid) under simple hydrogenation conditions
in the presence of Pd/C, without concomitant loss of
enantiomeric purity. It can be transformed further to β-lactam
in high yield according to the previous report (Scheme 2).
(2) Chaganty, S.; Golakoti, T.; Heltzel, C.; Moore, R. E.; Yoshida, W. Y.
J. Nat. Prod. 2004, 67, 1403−1406.
(3) Noyori, R.; Ikeda, T.; Ohkuma, T.; Widhalm, M.; Kitamura, M.;
Takaya, H.; Akutagawa, S.; Sayo, N.; Saito, T. J. Am. Chem. Soc. 1989,
111, 9134−9135.
(4) Nishi, T.; Kubota, T.; Fromont, J.; Sasaki, T.; Kobayashi, J.
Tetrahedron 2008, 64, 3127−3132.
Scheme 2. Derivative Synthesis of 2k
(5) Lelais, G.; Seebach, D. Biopolymers 2004, 76, 206−243.
(6) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. β-Peptides: From
Structure to Function. Chem. Rev. 2001, 101, 3219−3232.
(7) Huang, H.; Liu, X.; Deng, J.; Qiu, M.; Zheng, Z. Org. Lett. 2006, 8,
3359−3362.
(8) Guo, Y.; Shao, G.; Li, L.; Wu, W.; Li, R.; Li, J.; Song, J.; Qiu, L.;
Prashad, M.; Kwong, F. Y. Adv. Synth. Catal. 2010, 352, 1539−1553.
(9) Qiu, L.; Prashad, M.; Hu, B.; Prasad, K.; Repic, O.; Blacklock, T. J.;
Kwong, F. Y.; Kok, S. H. L.; Lee, H. W.; Chan, A. S. C. Proc. Natl. Acad.
Sci. U. S. A. 2007, 104, 16787−16792.
(10) Chi, Y.; English, E. P.; Pomerantz, W. C.; Horne, W. S.; Joyce, L.
A.; Alexander, L. R.; Fleming, W. S.; Hopkins, E. A.; Gellman, S. H. J.
Am. Chem. Soc. 2007, 129, 6050−6055.
(11) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New
York, 2001.
In conclusion, the first highly enantioselective hydrogenation
of β-nitroacrylates with H2 was accomplished by the catalyst of
the iridium/P,N ligand (Ir-4). The resultant methodology serves
as an efficient alternative for the asymmetric reduction of β-
nitroacrylates and complements the readily available bioreduc-
tions and organocatalytic transfer hydrogenation, showing a
potentially direct approach to the very useful stereogenic β-
nitroester synthons for chemical synthesis and pharmaceutical
science. Most importantly, the highest enantioselectivity was
achieved, which is otherwise not so easily accomplished by the
available reduction methodologies. Further investigations are
ongoing in order to illustrate the Ir-catalyzed hydrogenation
mechanism of β-nitroacrylates for ultimately establishing an
efficient catalytic system with a significant improvement in both
substrates scope and reactivity.
(12) Martin, N. J. A.; Cheng, X.; List, B. J. Am. Chem. Soc. 2008, 130,
13862−13863.
(13) Schneider, J. F.; Lauber, M. B.; Muhr, V.; Kratzer, D.; Paradies, J.
Org. Biomol. Chem. 2011, 9, 4323−4327.
(14) Swiderska, M. A.; Stewart, J. D. Org. Lett. 2006, 8, 6131−6133.
(15) Liu, Y. J.; Pei, X. Q.; Lin, H.; Gai, P.; Liu, Y.-C.; Wu, Z.-L. Appl.
Microbiol. Biotechnol. 2012, 95, 635−645.
(16) Li, S.; Huang, K.; Cao, B.; Zhang, J.; Wu, W.; Zhang, X. Angew.
Chem., Int. Ed. 2012, 51, 8573−8576.
(17) Li, S.; Huang, K.; Zhang, X. Chem. Commun. 2014, 50, 8878−
8881.
(18) Li, S.; Huang, K.; Zhang, J.; Wu, W.; Zhang, X. Chem. - Eur. J.
2013, 19, 10840−10844.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(19) Zhao, Q.; Li, S.; Huang, K.; Wang, R.; Zhang, X. Org. Lett. 2013,
15, 4014−4017.
(20) Zhou, M.; Dong, D.; Zhu, B.; Geng, H.; Wang, Y.; Zhang, X. Org.
Lett. 2013, 15, 5524−5527.
Experimental procedures and analytic data (NMR, HPLC
(21) Yan, Q.; Liu, M.; Kong, D.; Zi, G.; Hou, G. Chem. Commun. 2014,
50, 12870−12872.
(22) Zhang, W.; Chi, Y.; Zhang, X. Acc. Chem. Res. 2007, 40, 1278−
1290.
AUTHOR INFORMATION
Corresponding Authors
■
(23) Soltani, O.; Ariger, M. A.; Carreira, E. M. Org. Lett. 2009, 11,
4196−4198.
(24) Liu, D.; Tang, W.; Zhang, X. Org. Lett. 2004, 6, 513−516.
Author Contributions
§T.X. and D.L. contributed equally to this work.
D
Org. Lett. XXXX, XXX, XXX−XXX