bonding with the aldehyde substrate in a manner such that C–C
bond formation would take place by the zwitterionic intermediate
addition to the less hindered Re face of the aldehyde. A depiction
of the bifurcated hydrogen bonding that is expected to stabilize
the transition state and make the selectivity possible is shown in
Fig. 2.
Baudequin, D. Bre´geon, J. Levillain, F. Guillen, J.-C. Plaqueventa and
A.-C. Gaumont, Tetrahedron: Asymmetry, 2005, 16, 3921.
3 (a) I. Kawasaki, K. Tsunoda, T. Tsuji, T. Yamaguchi, H. Shibuta, N.
Uchida, M. Yamashita and S. Ohta, Chem. Commun., 2005, 2134; (b) A.
Lee, Y. Zhang, J. Piao, H. Yoon, C. Song, J. Choi and J. Hong, Chem.
Commun., 2003, 2624; (c) T. Geldbach and P. Dyson, J. Am. Chem.
Soc., 2004, 126, 8114; (d) S.-D. Yang, Y. Shi, Z.-H. Sun, Y.-B. Zhao and
Y.-M. Liang, Tetrahedron: Asymmetry, 2006, 17, 1895; (e) H. M. Guo,
L. F. Cun, L. Z. Gong, A. Q. Mi and Y. Z. Jiang, Chem. Commun.,
2005, 1450; (f) H. M. Guo, H. Y. Niu, M. X. Xue, Q. X. Guo, L. F.
Cun, A. Q. Mi, Y. Z. Jiang and J. J. Wang, Green Chem., 2006, 8, 682.
4 (a) B. Pe´got, G. Vo-Thanh, D. Gori and A. Loupy, Tetrahedron Lett.,
2004, 45, 6425;(b) R. Gausepohl, P. Buskens, J. Kleinen, A. Bruckmann,
C. W. Lehmann, J. Klankermayer and W. Leitner, Angew. Chem., Int.
Ed., 2006, 45, 3689.
5 (a) Z. Wang, Q. Wang, Y. Zhang and W. Bao, Tetrahedron Lett., 2005,
46, 4657; (b) W.-H. Qu and Z.-Z. Huang, Green Chem., 2006, 8, 731;
(c) S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu and J.-P. Cheng, Angew.
Chem., Int. Ed., 2006, 45, 3093; (d) B. Ni, Q. Zhang and A. D. Headley,
Green Chem., 2007, 9, 737; (e) B. Ni, Q. Zhang and A. D. Headley,
Tetrahedron Lett., 2008, 49, 1249; (f) Q. Zhang, B. Ni and A. D.
Headley, Tetrahedron, 2008, 64, 5091.
6 (a) W. Miao and T. H. Chan, Adv. Synth. Catal., 2006, 348, 1711; (b) S.
Luo, X. Mi, L. Zhang, S. Liu, H. Xu and J.-P. Cheng, Tetrahedron,
2007, 63, 1923.
7 (a) J. Ding, V. Desikan, X. Han, T. L. Xiao, R. Ding, W. S. Jenks and
D. W. Armstrong, Org. Lett., 2005, 7, 335; (b) A. Lee, Y. Zhang, J. Piao,
H. Yoon, C. Song, J. Choi and J. Hong, Chem. Commun., 2003, 2624;
(c) L. Kiss, T. Kurta´n, S. Antus and H. Brunner, ARKIVOC, 2003, 5,
69.
8 M. Tosoni, S. Laschat and A. Baro, Helv. Chim. Acta, 2004, 87, 2742.
9 N. T. Mcdougal and S. E. Schaus, J. Am. Chem. Soc., 2003, 125, 12094.
10 K.-S. Yang, W.-D. Lee, J.-F. Pan and K. Chen, J. Org. Chem., 2003, 68,
915.
11 M. Shi and J.-K. Jiang, Tetrahedron: Asymmetry, 2002, 13, 1941.
12 (a) J. N. Rosa, C. A. M. Afonso and A. Santos, Tetrahedron, 2001, 57,
4189; (b) E. J. Kim, S. Y. Ko and C. E. Song, Helv. Chim. Acta, 2003,
86, 894.
13 (a) S. T. Handy and M. Okello, J. Org. Chem., 2005, 70, 1915; (b) V. K.
Aggarwal, I. Emme and A. Mereu, Chem. Commun., 2002, 1612; (c) J.-
C. Hsu, Y.-H. Yen and Y.-H. Chu, Tetrahedron Lett., 2004, 45, 4673.
14 (a) B. Ni, A. D. Headley and G. Li, J. Org. Chem., 2005, 70, 10600;
(b) B. Ni, G. Satish and A. D. Headley, Tetrahedron Lett., 2007, 48,
1999.
Fig. 2 Proposed mechanism for BH reaction using bistereogenic CIL as
solvent.
In conclusion, three novel chiral ionic liquids have been designed
and synthesized. These CILs were assembled by incorporating
chiral side chains on the C-2 position of the imidazolium
cation rings; this avoids the shortcomings of their traditional
counterparts that can participate in deprotonation side reactions
on their C-2 positions. Application of these new CILs as green
media for asymmetric Baylis–Hillman reaction has been studied
and afforded moderate to high yields (up to 97%) with fair
enantioselectivities (up to 25% ee). Based on these preliminary
results, the design of novel CILs, which is expected to afford higher
levels of enantioselectivities for asymmetric reactions, is currently
being investigated in our laboratory.
Acknowledgements
We are grateful to the Robert A. Welch Foundation (T-1460) for
financial support of this research.
15 S. E. Drewes, N. D. Emslie, J. S. Field, A. A. Khan and N. Ramesar,
Tetrahedron: Asymmetry, 1992, 3, 255. The rotation for 6a is [a]D20
+27.9◦ (c = 0.77, MeOH).
=
16 Typical procedure for BH reaction: A mixture of aldehyde (1 mmol),
acrylate (3 mmol), DABCO (1.5 mmol) and CIL 4 (4 mmol) was stirred
for a period of time at the required temperature. The mixture was
extracted with ether (2 mL × 3), concentrated and purified by flash
chromatography and analyzed with 1H-NMR. The ether insoluble CIL
4 was diluted in dichloromethane (15 mL) and washed with water
(5 mL × 2). The organic layer was dried with anhydrous CaCl2, filtered
and evaporated in vacuum to afford the recycled CIL 4. The CIL 4 was
tested for its purity with spectral data and was found to be identical
with the initial one. The recycled CIL was reused without significant
loss of efficiency (Table 2, entry 1).
Notes and references
1 For selected reviews, see: (a) T. Welton, Chem. Rev., 1999, 99, 2071; (b) J.
Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev., 2002, 102,
3667; (c) H. Zhao and S. V. Malhotra, Aldrichimica Acta, 2002, 35, 75;
(d) P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley-
VCH, Weinheim, Germany, 2003; (e) R. Sheldon, Chem. Commun.,
2001, 2399.
2 For reviews, see: (a) A. D. Headley and B. Ni, Aldrichimica Acta, 2007,
40, 107; (b) W. Miao and T. H. Chan, Acc. Chem. Res., 2006, 39,
897; (c) J. Ding and D. W. Armstrong, Chirality, 2005, 17, 281; (d) C.
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 3041–3043 | 3043
©