H. K. Lee et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4424–4427
4427
10. Schourier, A. D.; Wang, H.; Talley, E. M.; Perez-Reyer, E.; Barret, P. Q. Am. J.
Physiol. Cell. Physiol. 2001, 280, C265.
11. Leuranguer, V.; Monteil, A.; Bourinet, E.; Dayanithi, G.; Nargeot, J. Am. J. Physiol.
2000, 279, H2540.
12. Wagner, C.; Kramer, B.; Hinder, M.; Kieninger, M.; Kurtz, A. Br. J. Pharmacol.
1998, 124, 579.
13. Bhattacharjee, A.; Whitehurst, R. M., Jr.; Zhang, M.; Wang, L.; Li, M.
Endocrinology 1997, 138, 3735.
14. Tanaka, H.; Shigenobu, K. J. Pharmacol. Sci. 2005, 99, 214.
15. (a) Li, M.; Hansen, B.; Huang, L.; Keyser, B. M.; Taylor, J. T. Cardiovasc. Drug Rev.
2005, 23, 173; (b) U.S. Patent Application 2004229908, 2004.
16. Doddareddy, M. R.; Choo, H.; Cho, Y. S.; Rhim, H.; Koh, H. Y.; Lee, J. H.; Jeong, S.
W.; Pae, A. N. Bioorg. Med. Chem. 2007, 15, 1091.
17. Doddareddy, M. R.; Jung, H. K.; Lee,J. Y. ; Lee, Y. S.; Cho, Y. S.; Koh, H. Y.; Pae, A.
N. Bioorg. Med. Chem. 2004, 12, 1605.
18. U.S. Patent 4808605, 1989.
tinal system. Also, 10e could penetrate BBB and reach to brain in
25% ratio compared to plasma (Table 4).
In summary, 10a–g and 11a–j were designed and synthesized
based on pharmacophore mapping study and most of compounds
showed higher T-type calcium channel inhibition activities than
Mibefradil. Among them, compound 10e exhibited the most potent
T-type calcium current blocking activity and good pharmacokinetic
profiles. Furthermore, 10e showed excellent selectivity over L-type
calcium channel. Therefore, the series of title compounds were
suggested to elucidate the potential of new therapeutics for T-type
calcium channel associated disease such as hypertension, neuro-
pathic pain, and migraine based on the fundamental etiology.
19. Lee, J.-H.; Gomora, J. C.; Cribbs, L. L.; Perez-Reyes, E. Biophys. J. 1999, 77, 3034.
20. Monteil, A.; Chemin, J.; Bourinet, E.; Mennessier, G.; Lory, P.; Nargeot, J. J. Biol.
Chem. 2000, 275, 6090.
Acknowledgments
21. Experimental procedure for patch-clamp (electrophysiological recording).
For the recordings of a1G T-type Ca2+ currents, the standard whole-cell
patch-clamp method was utilized. Briefly, borosilicate glass electrodes
The authors express thanks to Prof. Seong-Woo Jeong and Dr. Ki
Ho Lee for their contributions to subtype selectivity and PK profil-
ing. This work was financially supported by a grant (2E 20430)
from KIST vision 21 program.
with
solution contained (in mM): 130 KCl, 11 EGTA,
Hepes (pH 7.4). The external solution contained (in mM): 140 NaCl,
CaCl2, 10 Hepes, and 10 glucose (pH 7.4). a1G T-type Ca2+ currents were
evoked every 15 s by
50 ms depolarizing voltage step from ꢀ100 mV
to ꢀ30 mV. The molar concentrations of test compounds required to
produce 50% inhibition of peak currents (IC50 were determined from
a
resistance of 3–4 M
X
were pulled and filled with the internal
5
Mg–ATP, and 10
2
a
References and notes
)
fitting raw data into dose–response curves. The current recordings were
obtained using an EPC-9 amplifier and Pulse/Pulsefit software program
(HEKA, Germany).
1. (a) Barclay, J. W.; Morgan, A.; Burgoyne, R. D. Cell Calcium 2005, 38, 343; (b)
Zheng, X.; Bobich, J. A. Brain Res. Bull. 1998, 47, 117; (c) Himpens, B.; Missiaen,
L.; Casteels, R. J. Vasc. Res. 1995, 32, 207; (d) Levi, A. J.; Brooksby, P.; Hancox, J.
C. Cardiovasc. Res. 1993, 27, 1743.
2. Van der Vring, J.; Cleophas, T.; Van der Wall, E.; Niemeyer, M. Am. J. Ther. 1999,
6, 229.
3. Clozel, J.; Ertel, E.; Ertel, S. J. Hypertens. Suppl. 1997, 15, S17.
4. Hermsmeyer, K.; Mishra, S.; Miyagawa, K.; Minshall, R. Clin. Ther. 1997, 19, 18.
5. Masumiya, H.; Kase, J.; Tanaka, Y.; Tanaka, H.; Shigenobu, K. Res. Commun. Mol.
Pathol. Pharmacol. 1999, 104, 322.
6. Mishra, S.; Hermsmeyer, K. Circ. Res. 1994, 75, 144.
7. Spoendlin, M.; Peters, J.; Welker, H.; Bock, A.; Thiel, G. Nephrol. Dial. Transplant.
1998, 13, 1787.
22. Compound 10e: 1H NMR (400 MHz, CDCl3) d 7.45 (br s, 2H), 7.39 (d, J = 8.6 Hz,
2H), 7.18 (dd, J = 6.0, 3.1 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 3.69 (s, 3H), 3.04 (t,
J = 6.4 Hz, 2H), 2.48 (t, J = 5.8 Hz, 2H), 2.35–2.40 (m, 3H), 2.21 (s, 3H), 2.04–2.10
(m, 1H), 1.89–1.98 (m, 3H), 1.23–1.43 (m, 2H), 0.85 (d, J = 6.8 Hz, 3H), 0.74 (d,
J = 6.8 Hz, 3H); 13C NMR (100 MHz, CDCl3) d 175.0, 155.4, 138.6, 130.7, 130.1,
121.7, 120.5, 59.0, 58.4, 58.2, 51.7, 41.5, 34.6, 33.9, 28.9, 24.2, 22.7, 18.9, 18.0.;
Anal. (C26H34BrN3O22HCl) Calcd: C, 54.46; H, 6.33; N, 7.33. Found: C, 54.16; H,
6.23; N, 7.61.
23. For reviews of the hERG channel and QT interval prolongation, see (a)
Finalyson, K.; Witchel, H. J.; McCulloch, J.; Sharkey, J. Eur. J. Pharmacol.
2004, 500, 129; (b) Fermini, B.; Fossa, A. A. Nat. Rev. Drug Discov. 2003, 2,
439.
8. Sorelle, R. Circulation 1998, 98, 83.
9. Hagiwara, N.; Irisawa, H.; Kameyama, M. J. Physiol. 1988, 395, 233.