64
Letters in Organic Chemistry, 2009, Vol. 6, No. 1
Liu et al.
Interscience: New York, 2002; Vol. 1: pp. 1133; (b) Knowles, J. P.;
Whiting, A. Org. Biomol. Chem., 2007, 5, 31; (c) Whitcombe, N.
J.; Hii, K. K.; Gibson, S.E. Tetrahedron, 2001, 57, 7449; (d)
Alonso, F.; Beletskaya, I.P.; Yus, M. Tetrahedron, 2005, 61, 11771;
e) Oestreich, M. Eur. J. Org. Chem., 2005, 783; (f) Crisp, G.T.
Chem. Soc. Rev., 1998, 27, 427.
J. Am. Chem. Soc., 2003, 125, 3503; (d) Von Schenck, H.; Aker-
mark, B.; Svensson, M. Organometallics, 2002, 21, 2248; (e) Von
Schenck, H.; Stromberg, S.; Zetterberg, K.; Ludwig, M.; Aker-
mark, B.; Svensson, M. Organometallics, 2001, 20, 2813.
General reviews on ionic liquid: (a) Welton, T. Coord. Chem. Rev.,
2004, 248, 2459; (b) Welton, T.; Smith P.J. Adv. Organomet.
Chem., 2004, 51, 251.
[13]
[2]
[3]
Heck, R.F. J. Am. Chem. Soc., 1971, 93, 6896.
Amatore, C.; Godin, B.; Jutand, A.; Lemaître, F. Organometallics,
2007, 26, 1757.
[14]
[15]
[16]
Vallin, K.S.A.; Zhang, Q.S.; Larhed, M.; Curran, D.P.; Hallberg,
A. J. Org. Chem., 2003, 68, 6639.
Vallin, K.S.A.; Emilsson, P.; Larhed, M.; Hallberg, A. J. Org.
Chem., 2002, 67, 6243.
[4]
(a) Amatore, C.; Godin, B.; Jutand, A.; Lemaître, F. Chem. Eur. J.,
2007, 13, 2002; (b) Datta, G.K.; Von Schenk, H.; Hallberg, A.;
Larhed, M. J. Org. Chem., 2006, 71, 3896; (c) Deeth, R.J.; Smith,
A.; Brown, J.M. J. Am. Chem. Soc., 2004, 126, 7144; (d) Popp,
B.V.; Thorman, J.L.; Morales, C.M.; Landis, C.R.; Stahl, S.S. J.
Am. Chem. Soc., 2004, 126, 14832; (e) Fristrup, P.; Le Quement,
S.; Tanner, D.; Norrby, P.-Q. Organometallics, 2004, 23, 6160; (f)
Alcazar-Roman, L.M.; Hartwig, J.F. Organometallics, 2002, 21,
491.
(a) Littke, A.F.; Fu, G.C. J. Org. Chem., 1999, 64, 10; (b) Littke,
A.F.; Fu, G.C. Angew. Chem. Int. Ed., 2002, 41, 4176.
Strieter, E.R.; Blackmond, D.G.; Buchwald, S.L. J. Am. Chem.
Soc., 2003, 125, 13978; (b) Yin, J.; Rainka, M.P.; Zhang, X.;
Buchwald, S.L. J. Am. Chem. Soc., 2002, 124, 6334; (c) Wolfe, J.
P.; Tomori, H.; Sadighi, J.P.; Yin, J.; Buchwald, S.L. J. Org.
Chem., 2000, 65, 1158.
General procedure for the Heck arylation in ionic liquid: An oven-
dried carousel reaction tube containing a stirrer bar was charged
with 4-bromoacetophone 1 (1.0 mmol), Pd(OAc)2 (0.02 mmol),
ligand (0.04 mmol), and [bmim][PF6] (1 mL) under nitrogen at
room temperature. After the mixture was degassed three times, n-
butyl vinyl ether 2 (2.0 mmol) and Et3N (1.5 mmol) were injected
sequentially. The mixture was stirred and heated at 115 °C under
N2 for 6 h. After cooled to room temperature, a small sample was
taken for NMR analysis. All of the products have previously been
fully characterised, and for the purpose of comparison of conver-
sions, the aim of this study, 1H NMR was found to be sufficient, as
the products generally contained only trace undesired products.11c
Liu, S.; Thomson, N.; Pettman, A.; Hyder, Z.; Mo, J.; Xiao, J. J.
Mol. Catal. A Chem., 2008, 279, 210.
[5]
[6]
[17]
[18]
[19]
[20]
[7]
Shaughenessy, K.H.; Kim, P.; Hartwig, J.F. J. Am. Chem. Soc.,
1999, 121, 2123; (b) Culkin, D.A.; Hartwig, J.F. Acc. Chem. Res.,
2003, 36, 234.
Portnoy, M.; Ben-David, Y.; Rousso, I.; Milstein, D. Organometal-
lics, 1994, 13, 3465.
msu.su/gran/gamess/index.html
[8]
[9]
Ehrentrant, A.; Zapf, A.; Beller, M. Synlett, 2000, 1589.
Van Strjdonck, G.P.F.; Boele, M.D.K.; Kamer, P.C.J.; Vries, J.G.;
Van Leeuwen, P.W.N.M. Eur. J. Inorg. Chem., 1999, 1073.
(a) Cabri, W.; Candiani, I.; Bedeschi, A. J. Org. Chem., 1992, 57,
3558; (b) Cabri, W.; Candiani, I. Acc. Chem. Res., 1995, 28, 2.
(a) Mo, J.; Xiao, J. Angew. Chem. Int. Ed., 2006, 45, 4152; (b) Mo,
J.; Xu, L.; Ruan, J.; Liu, S.; Xiao, J. Chem. Commun., 2006, 3591;
(c) Mo, J.; Xu, L.; Xiao, J. J. Am. Chem. Soc., 2005, 127, 751; (d)
Mo, J.; Liu, S.; Xiao, J. Tetrahedron, 2005, 61, 9902; (e) Pei, W.;
Mo, J.; Xiao, J. J. Organomet. Chem., 2005, 690, 3546; (f) Xu, L.;
Chen, W.; Ross, J.; Xiao, J. Org. Lett., 2001, 3, 295; (g) Sun, L.;
Pei, W.; Shen, C. J. Chem. Res., 2006, 388; (h) Olofsson, K.;
Sahlin, H.; Larhed, M.; Hallberg, A. J. Org. Chem., 2001, 66, 544;
(i) Larhed, M.; Andersson, C.M.; Hallberg, A. Tetrahedron, 1994,
50, 285; (j) Andersson, C.M.; Larsson, J.; Hallberg, A. J. Org.
Chem., 1990, 55, 5757; (k) Davis, G.D.; Hallberg, A. Chem. Rev.,
1989, 89, 1433; (l) Cabri, W.; Candiani, I.; Bedeschi, A.; Penco, S.;
Santi, R. J. Org. Chem., 1992, 57, 1481.
The 6-31G* basis set was used for all atoms except Pd. Relativistic
effects for Pd were addressed by using SBKJC effective core po-
tential (ECP) together with the SBKJC basis set. Geometry optimi-
zations were performed with no symmetry restrictions. Vibrational
frequency calculations at B3LYP/6-31G* level of theory were used
to derive zero-point-energy and entropy contributions at 413.15K
using unscaled frequencies. Energy minima were confirmed by no
imaginary frequencies. Transition states were confirmed by only
one imaginary frequency with associated atomic motion consistent
with the mechanism. The free energy G(gas) has been calculated as
follows: G(gas) = H(gas) – TS(gas), H(gas) = H(SCF) + ZPE.
G(gas) = free energy in gas phase, H(gas) = enthalpy in gas phase,
T = Temperature, 413.15K, S(gas) = entropy in gas phase, H(SCF)
= self consistent field energy, ZPE = zero point energy assuming
harmonic oscillator approximation. Structures were visualized us-
ing Molekel.
[10]
[11]
[21]
Hahn, C. Chem. Eur. J., 2004, 10, 5888.
[12]
(a) Ambrogio, I.; Fabrizi, G.; Cacchi, S.; Henriksen, S.T.; Fristrup,
P.; Tanner, D.; Norrby, P.-O. Organometallics, 2008, 27, 3187; (b)
Surawatanawong, P.; Fan, Y.; Hall, M.B. J. Organomet. Chem.,
2008, 693, 1552; (c) Von Schenck, H.; Akermark, B.; Svensson, M.