CLUSTER
Proteinogenic Amino Acids in Asymmetric Aldol Reaction in DMSO
1569
solvent, see: Blackmond, D. G.; Armstrong, A.; Coombe,
V.; Wells, A. Angew. Chem. Int. Ed. 2007, 46, 3798.
(7) For organocatalysis-mediated asymmetric aldol reaction in
aqueous solvent, see: (a) Torii, H.; Nakadai, M.; Ishihara,
K.; Saito, S.; Yamamoto, H. Angew. Chem. Int. Ed. 2004, 43,
1983. (b) Nyberg, A. I.; Usano, A.; Pihko, P. M. Synlett
2004, 1891. (c) Tang, Z.; Yang, Z.-H.; Cun, L.-F.; Gong, L.
G.; Mi, L.-Q.; Jiang, Y. Z. Org. Lett. 2004, 6, 2285.
(d) Casas, J.; Sunden, H.; Cordova, A. Tetrahedron Lett.
2004, 45, 6117. (e) Ward, D. E.; Jheengut, V. Tetrahedron
Lett. 2004, 45, 8347. (f) Ibrahem, I.; Cordova, A.
In summary, we have investigated use of all the proteino-
genic amino acids in the aldol reaction of aldehyde and
ketone in DMSO and aqueous DMSO, and found that
most of them promote the aldol reaction of cyclohexanone
enantioselectively. A positive water effect on diastereose-
lectivity has been observed with some of the amino acids,
while water afforded a positive effect on enantioselectivi-
ty only when Pro, Ser or His were employed. For the pro-
line-mediated aldol reaction, a large positive effect on
diastereo- and enantioselectivities was observed in the re-
action of a-substituted methyl ketone, while no effect was
observed in that of methyl ketone. Whereas valine and
isoleucine afforded excellent results in the aldol reaction
of cyclohexanone, they are not suitable catalysts in the re-
action of acyclic ketones.
Tetrahedron Lett. 2005, 46, 3363. (g) Amedjkouh, M.
Tetrahedron: Asymmetry 2005, 16, 1411. (h) Cordova, A.;
Zou, W.; Ibrahem, I.; Reyes, E.; Engqvist, M.; Liao, W.-W.
Chem. Commun. 2005, 3586. (i) Wu, Y.-S.; Chen, Y.; Deng,
D.-S.; Cai, J. Synlett 2005, 1627. (j) Dziedzic, P.; Zou, W.;
Hafren, J.; Cordova, A. Org. Biomol. Chem. 2006, 4, 38.
(k) Pihko, P. M.; Laurikainen, K. M.; Usano, A.; Nyberg, A.
I.; Kaavi, J. A. Tetrahedron 2006, 62, 317. (l) Cordova, A.;
Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes, E.; Xu, Y. Chem.
Eur. J. 2006, 12, 5383. (m) Guillena, G.; Hita, M. C.;
Najera, C. Tetrahedron: Asymmetry 2006, 17, 729.
(n) Recently, Blackmond and co-workers reported the role of
water in aldol reaction. See: Zotova, N.; Franzke, A.;
Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2007,
129, 15100.
Acknowledgment
This work was partially supported by the Toray Science Foundation
and a Grant-in-Aid for Scientific Research from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
References and Notes
(8) For the reaction in the presence of water, see: (a) Jiang, Z.;
Liang, Z.; Wu, X.; Lu, Y. Chem. Commun. 2006, 2801.
(b) Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S. Org. Lett.
2006, 8, 4417. (c) Font, D.; Jimeno, C.; Pericas, M. A. Org.
Lett. 2006, 8, 4653. (d) Guillena, G.; Hita, M. C.; Najera, C.
Tetrahedron: Asymmetry 2006, 17, 1493. (e) Wu, X.; Jiang,
Z.; Shen, H.-M.; Lu, Y. Adv. Synth. Catal. 2007, 349, 812.
(f) Maya, V.; Raj, M.; Singh, V. K. Org. Lett. 2007, 9, 2593.
(9) For the terms about ‘in the presence of water’ and ‘water’,
see: (a) Hayashi, Y. Angew. Chem. Int. Ed. 2006, 45, 8103.
(b) Brogan, A. P.; Dickerson, T. J.; Janda, K. D. Angew.
Chem. Int. Ed. 2006, 45, 8100.
(10) (a) Hayashi, Y.; Sumiya, T.; Takahashi, J.; Gotoh, H.;
Urushima, T.; Shoji, M. Angew. Chem. Int. Ed. 2006, 45,
958. (b) Aratake, S.; Itoh, T.; Okano, T.; Nagae, N.; Sumiya,
T.; Shoji, M.; Hayashi, Y. Chem. Eur. J. 2007, 13, 10246.
(11) Mase, N.; Nakai, Y.; Ohara, N.; Yoda, H.; Takabe, K.;
Tanaka, F.; Barbas, C. F. III J. Am. Chem. Soc. 2006, 128,
734.
(1) For reviews, see: (a) Modern Aldol Reactions, Vol. 1;
Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004. (b)
Modern Aldol Reactions, Vol. 2; Mahrwald, R., Ed.; Wiley-
VCH: Weinheim, 2004.
(2) (a) Yamada, Y. M. A.; Yoshikawa, N.; Sasai, H.; Shibasaki,
M. Angew. Chem. Int. Ed. 1997, 36, 1871. (b) For a review,
see: Shibasaki, M.; Matusnaga, S.; Kumagai, N. In Modern
Aldol Reaction, Vol. 2; Mahrwald, R., Ed.; Wiley-VCH:
Weinheim, 2004, Chap. 6, 197–227.
(3) (a) List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc.
2000, 122, 2395. (b) Sakthivel, K.; Notz, W.; Bui, T.;
Barbas, C. F. III J. Am. Chem. Soc. 2001, 123, 5260.
(4) For reviews, see: (a) List, B. In Modern Aldol Reactions,
Vol. 1; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, 2004,
Chap. 4, 161–200. (b) List, B. Tetrahedron 2002, 58, 5573.
(c) List, B. Acc. Chem. Res. 2004, 37, 548. (d) Saito, S.;
Yamamoto, H. Acc. Chem. Res. 2004, 37, 570. (e) Notz,
W.; Tanaka, F.; Barbas, C. F. III Acc. Chem. Res. 2004, 37,
580. (f) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3,
719. (g) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B.
Chem. Rev. 2007, 107, 5471.
(5) For reviews of organocatalysis, see: (a) Berkessel, A.;
Groger, H. Asymmetric Organocatalysis; Wiley-VCH:
Weinheim, 2005. (b) Dalko, P. I.; Moisan, L. Angew. Chem.
Int. Ed. 2004, 43, 5138. (c) Hayashi, Y. J. Synth. Org.
Chem., Jpn. 2005, 63, 464. (d) List, B. Chem. Commun.
2006, 819. (e) Marigo, M.; Jørgensen, K. A. Chem.
Commun. 2006, 2001. (f) Lelais, G.; MacMillan, D. W. C.
Aldrichimica Acta 2006, 39, 79. (g) Gaunt, M. J.; Johnsson,
C. C. C.; McNally, A.; Vo, N. T. Drug Discovery Today
2007, 12, 8. (h) Enantioselective Organocatalysis; Dalko,
P. I., Ed.; Wiley-VCH: Weinheim, 2007.
(12) Hayashi, Y.; Aratake, S.; Itoh, T.; Okano, T.; Sumiya, T.;
Shoji, M. Chem. Commun. 2007, 957.
(13) Mangion, I. K.; Northrup, A. B.; MacMillan, D. W. C.
Angew. Chem. Int. Ed. 2004, 43, 6722.
(14) (a) Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Angew.
Chem. Int. Ed. 2005, 44, 3055. (b) Kano, T.; Tokuda, O.;
Takai, J.; Maruoka, K. Chem. Asian J. 2006, 1, 210.
(15) DMSO was purified by the distillation over CaH2 under
reduced pressure after standing over CaH2 overnight:
Armarego, W. L. F.; Chai, C. L. L. Purification of
Laboratory Chemicals, 5th ed.; Elsevier: Burlington, 2003.
(16) Typical Experimental Procedure (Table 1): To a DMSO
solution (0.40 mL) or aq DMSO solution (DMSO: 0.40 mL;
H2O: 22 mL) of amino acid (0.12 mmol) were added p-
nitrobenzaldehyde (60.5 mg, 0.4 mmol) and cyclohexanone
(207 mL, 2.0 mmol) under an argon atmosphere at r.t. When
the reaction was complete, it was quenched with pH 7.0
phosphate buffer solution. The organic materials were
extracted with EtOAc (3 ×) and the combined organic
extracts were dried over anhyd Na2SO4, and concentrated in
vacuo after filtration. The residue was purified by flash
chromatography to give an aldol product.
(6) (a) Ribe, S.; Wipf, P. Chem. Commun. 2001, 299.
(b) Lindstrom, U. M. Chem. Rev. 2002, 102, 2751.
(c) Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35,
209. (d) Pirrung, M. C. Chem. Eur. J. 2006, 12, 1312. (e)
Organic Reactions in Water; Lindstrom, U. M., Ed.;
Blackwell Publishing: Oxford, 2007. (f) For the criticism
toward the notion that water is an environmentally friendly
Synlett 2008, No. 10, 1565–1570 © Thieme Stuttgart · New York