I. Fratoddi et al.
FULL PAPER
this case, the reaction course was monitored by UV/Vis spec-
troscopy until a strong absorption band at 452 nm was detected.
The resulting reaction solution was handled as reported for method
a. The final small-volume organic solution was purified by elution
with THF on a short column for chromatography (florisil). The
eluted material was further purified by crystallization (THF/
MeOH), and pure complex 4 was obtained. Yield: 29.6 mg
(0.017 mmol, 32%). The elemental analysis and spectroscopic char-
acterizations are consistent with those reported in method a.
to thank Prof. Marco Rossi and Dr. Roberto Matassa for helpful
comments and discussion of the TEM analysis.
[1] S. Fukuzumi, Eur. J. Inorg. Chem. 2008, 9, 1351–1362.
[2] Y. Kobuke, Eur. J. Inorg. Chem. 2006, 12, 2333–2351.
[3] M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O.
Screen, H. L. Anderson, J. Am. Chem. Soc. 2006, 128, 12432–
12433.
[4] J.-S. Lee, J. J. Green, K. T. Love, J. Sunshine, R. Langer, D. G.
Anderson, Nano Lett. 2009, 9, 2402–2406.
Synthesis of Porphyrin-Bridged Oligomer (5): ZnDEP (1) (200 mg,
0.30 mmol), [Pd(PBu3)2Cl2] (175 mg, 0.21 mmol) and CuI (3.5 mg)
were mixed in a three-necked reaction vessel with the solvent mix-
ture NHEt2/CHCl3 (60 mL, 1:1 v/v) whilst stirring in the dark at T
= 25 °C for 3 h. A shift in the absorption band was observed from
430 (Soret band of ZnDEP) to 462 nm (end of the reaction). The
reaction solution was submitted to the same purification procedure
reported for method b. Yield: 150 mg (40wt.-%). 1H NMR
(CDCl3): δ = 1.70 (t, 12 H, CH2CH3), 2.95 (s, 12 H, CH3), 3.69 (s,
6 H, OCH3), 3.82 (q, 8 H, CH2CH3), 6.17 (dd, 4 H, CϵC–
C6H4OCH3), 6.47 (dd, 4 H, CϵC–C6H4OCH3), 7.84–7.08 (m, 60
H, P–C6H5), 9.66 (s, meso 2 H) ppm. 31P NMR (CDCl3): δ = 10.46
(terminal), 11.60 ppm (internal), integral ratio 1:1.5. UV/Vis
[5] S. I. Lim, C. J. Zhong, Acc. Chem. Res. 2009, 42, 798–808.
[6] F. Vitale, R. Vitaliano, C. Battocchio, I. Fratoddi, C. Giannini,
E. Piscopiello, A. Guagliardi, A. Cervellino, G. Polzonetti,
M. V. Russo, L. Tapfer, Nanoscale Res. Lett. 2008, 3, 461–467.
[7] H. Imahori, M. Arimura, T. Hanada, Y. Nishimura, I. Yama-
zaki, Y. Sakata, S. Fukuzumi, J. Am. Chem. Soc. 2001, 123,
335–336.
[8] T. Hasobe, Phys. Chem. Chem. Phys. 2010, 12, 44–57.
[9] A. Kotiaho, R. Lahtinen, A. Efimov, H. Lehtivuori, N. V. Tka-
chenko, T. Kanerva, H. Lemmetyien, J. Photochem. Photobiol.
A: Chem. 2010, 212, 129–134.
[10] J. Ohyama, Y. Hitomi, Y. Higuchi, M. Shinagawa, H. Mukai,
M. Kodera, K. Teramura, T. Shishido, T. Tanaka, Chem. Com-
mun. 2008, 6300–6302.
[11] J. Ohyama, Y. Hitomi, Y. Higuchi, T. Tanaka, Top. Catal. 2009,
(CHCl3): λmax = 462, 495, 593, 632, 705 nm. FTIR (nujol): ν =
˜
52, 852–859.
2066 [ν(CϵC)], 1596 [ν(C=C), arom.], 1250 [ν(C–H), pyrrole], 856
[ν(C–N), pyrrole], 446, 400 [ν(Pd–P)] cm–1. C56H85N4P2PdZn (re-
peat unit) (%): calcd. C 65.56, H 8.07, N 5.00; found C 63.48, H
7.80, N 5.10. GPC: Mw 5570, Mn 3700 a.m.u., a = 1.5 (repeat unit
1048 a.m.u., then the oligomer is made by 3–5 units).
[12] A. Satake, M. Fujita, Y. Kurimoto, Y. Kobuke, Chem. Com-
mun. 2009, 1231–1233.
[13] L. Zhang, H. Chen, J. Wang, Y. F. Li, J. Wang, Y. Sang, S. J.
Xiao, L. Zhan, C. Z. Huang, Small 2010, 6, 2001–2009.
[14] P. Banerjee, D. Conklin, S. Nanayakkara, T.-H. Park, M. J.
Therien, D. A. Bonnell, ACS Nano 2010, 4, 1019–1025.
[15] Y. Noda, S. Noro, T. Akutagawa, T. Nakamura, Phys. Rev. B
2010, 82, 205420.
[16] I. Fratoddi, C. Battocchio, A. La Groia, M. V. Russo, J. Polym.
Sci., Part A Polym. Chem. 2007, 45, 3311–3329.
[17] I. Fratoddi, C. Battocchio, R. DЈAmato, G. P. Di Egidio, L.
Ugo, G. Polzonetti, M. V. Russo, Mater. Sci. Eng. C: Biom.
Supramol. Syst. 2003, C23, 867–871.
[18] C. Battocchio, I. Fratoddi, M. V. Russo, G. Polzonetti, J. Phys.
Chem. A 2008, 112, 7365–7373.
[19] C. Battocchio, I. Fratoddi, R. Vitaliano, M. V. Russo, G. Pol-
zonetti, Solid State Sci. 2010, 12, 1881–1885.
[20] M. E. Amato, A. Licciardello, V. Torrisi, L. Ugo, I. Venditti,
M. V. Russo, Mater. Sci. Eng. C: Biom. Supramol. Syst. 2009,
29, 1010–1017.
[21] C. Battocchio, I. Fratoddi, G. Iucci, M. V. Russo, A. Goldoni,
Ph. Parent, G. Polzonetti, Mater. Sci. Eng. C: Biom. Supramol.
Syst. 2007, 27, 1338–1342.
Synthesis of Pd–porphyrin-Stabilized Gold Nanoparticles (AuNPs-
4): The porphyrin-stabilized gold nanoparticles were prepared at
room temperature (r.t.) in a two-phase system by following an as-
sessed procedure.[44,45] The molar ratio of Au/porphyrin was 1:1.
Compound 4 (50.0 mg, 0.0286 mmol) was dissolved in dichloro-
methane (20 mL) and added to a 0.03 m solution of HAuCl4·H2O
(1.00 mL) in deionized water (11.3 mg, 0.0286 mmol). Tetraoc-
tylammonium bromide (TOAB; 20.0 mg) was added and then a
0.05 m aqueous solution of NaBH4 (10 mL, 20.0 mg, 0.529 mmol)
was poured into it dropwise under vigorous stirring. The reaction
mixture was allowed to react for 3 h at room temperature. Extrac-
tion with H2O/CH2Cl2 followed. The obtained green–brown solid
was isolated by evaporation of the organic layer. The solid was
re-suspended in methanol, washed with acetonitrile and hexane,
recovered from dichloromethane and dried for 3 d under vacuum.
Yield: 15wt.-%. The UV/Vis spectra of the washing solutions
showed the absence of plasmon absorption arising from AuNPs
and a low absorption from the free porphyrin (Soret band:
452 nm). UV/Vis (CHCl3): λmax = 436, 500, 590, 620 nm. FTIR
[22] I. Fratoddi, M. Delfini, F. Sciubba, M. B. Hursthouse, H. R.
Ogilvie, M. V. Russo, J. Organomet. Chem. 2006, 691, 5920–
5926.
[23] T. H. Schmitt, Z. Zheng, O. Jardetzky, Biochemistry 1995, 34,
(film): ν = 2932, 2871, 2084 [ν(CϵC)], 1600 [ν(C=C), arom.], 1468,
˜
13183–13189.
1454, 1354, 1055, 852 [ν(C–N), pyrrole], 446 [ν(Pd–P)] cm–1. Ele-
[24] R. J. Abraham, H. Pearson, K. M. Smith, J. Am. Chem. Soc.
1976, 98, 1604–1606.
mental analysis: found C 22.82, H 4.12, N 0.36.
[25] G. Iucci, G. Polzonetti, P. Altamura, G. Paolucci, A. Goldoni,
M. V. Russo, J. Vac. Sci. Technol. A 2000, 18, 248–256.
[26] a) H. Takahashi, M. Kanehara, T. Teranishi, J. Photopolym.
Sci. Technol. 2007, 20, 133–135; b) H. Imahori, H. Norieda, Y.
Nishimura, I. Yamazaki, K. Higuchi, N. Kato, T. Motohiro,
H. Yamada, K. Tamaki, M. Arimura, Y. Sakata, J. Phys. Chem.
B 2000, 104, 1253–1260.
[27] M. Kanehara, H. Takahashi, T. Teranishi, Angew. Chem. Int.
Ed. 2008, 47, 307–310.
[28] M. Zhou, S. Ouyang, Z. Liu, G. Lu, S. Gao, Z. Li, Vibr. Spec-
trosc. 2009, 49, 7–13.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, UV-Vis, 1H NMR, 31P NMR, IR, PL,
COSY and NOESY spectra and data of the compounds are pre-
sented.
Acknowledgments
The authors gratefully acknowledge the financial support to this
research by Progetti Ateneo Sapienza 2009 (C26A09AS5R), At-
eneo Federato AST 2008 (26F09MA27) and the MAE-Ministero
dellЈUniversità e della Ricerca (MIUR), Progetti di Ricerca Scien-
tifica e Tecnologica Bilaterale 2008–2010. The authors would like
[29] X. Liu, M. Atwater, J. Wang, Q. Huo, Colloids Surf. B 2007,
58, 3–7.
[30] H. Qian, R. Jin, Nano Lett. 2009, 9, 4083–4087.
4912
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 4906–4913