A R T I C L E S
Tsubogo et al.
pure R-amino acid derivatives.10 Since the first report on
asymmetric alkylation using a chiral phase-transfer catalyst by
O’Donnell et al. in 1978,11 many highly stereoselective reactions
have been developed.10 Among them, asymmetric Michael-type
1,4-addition of Schiff bases of glycine esters to R,ꢀ-unsaturated
carbonyl compounds provides an efficient route to optically
active glutamic acid derivatives.10 Although some successful
examples have been reported in this reaction, excess amounts
of bases or substrates are required to realize high conversions
in most cases.12 However, conceptually a catalytic amount of a
Brønsted base should work effectively in this reaction. We
envisioned that the alkaline-earth metals were suitable for this
reaction and started our investigation to develop asymmetric
1,4-addition reactions of glycine derivatives to R,ꢀ-unsaturated
carbonyl compounds using a chiral-alkaline-earth metal cata-
lyst.13 In this system, a catalytic amount of a Brønsted base
was found to work effectively, which means that this reaction
system is highly atom economical. On the other hand, in the
course of our research, we found that a [3 + 2] cycloaddition
unexpectedly proceeded under similar reaction conditions to
afford optically active pyrrolidine derivatives in good to high
enentioselectivities. It was revealed that small differences in
the substrate structure changed the reaction course dramatically.
Here, we describe full details of our investigation into the
development of catalytic asymmetric 1,4-additions and catalytic
asymmetric [3 + 2] cycloadditions of glycine esters with R,ꢀ-
unsaturated carbonyl compounds using chiral alkaline-earth-
metal-bisoxazoline complexes.
Scheme 1. Alkaline-earth-metal complexes prepared from
bisoxazolidine ligands.
levels.6,7 We turned our attention to the chiral bisoxazoline
skeleton as a model chiral ligand. Bisoxazoline derivatives are
one of the most efficient and often employed chiral ligands in
asymmetric catalysis.8 When the methylene-tethered bisoxazo-
line ligand (e.g., 1-5) is used, the alkaline-earth-metal base
could deprotonate the methylene moiety of the ligand to form
a rigid chiral complex where two nitrogen atoms coordinate
the metal center in a bidentate fashion (Scheme 1).
Furthermore, the other basic site, the remaining alkoxide,
could also deprotonate active protons of substrates to form
optically active carbanions. These types of complexes are known
in asymmetric carbon-carbon bond forming reactions using
stoichiometric amounts of chiral complexes prepared from alkyl
zinc or Grignard reagents, although use of these complexes as
chiral catalysts has been limited.9
Results and Discussion
We started our examination of the 1,4-addition of N-
(diphenylmethylidene)glycine tert-butyl ester (7a) to methyl
acrylate (6a) in THF using alkaline-earth-metal alkoxides.
Except for low activity of the magnesium alkoxide, the calcium,
strontium, and barium alkoxides showed good catalytic activity
(Table 1). In particular, the strontium and barium alkoxides
promoted the reaction smoothly to afford the desired product
in high yields. Addition of 5 Å molecular sieves (MS 5Å) was
very effective, and the calcium alkoxide catalyst also gave a
good yield in a shorter reaction time in the presence of MS 5Å.
With those good results in hand, we decided to examine
asymmetric 1,4-addition using chiral alkaline-earth-metal catalysts.
In our initial investigation, BINOL derivatives were examined
by combining them with calcium isopropoxide; unfortunately,
Recently, catalytic asymmetric carbon-carbon bond forming
reactions using glycine ester derivatives are receiving a lot of
attention since they provide efficient synthetic routes to optically
(6) For use of the Ba catalyst see: (a) Yamada, Y. M. A.; Shibasaki, M.
Tetrahedron Lett. 1998, 39, 5561. (b) Yamaguchi, A.; Aoyama, N.;
Matsunaga, S.; Shibasaki, M. Org. Lett. 2007, 9, 3387.
(7) For use of the Ca catalyst see: (a) Suzuki, T.; Yamagiwa, N.; Matsuo,
Y.; Sakamato, S.; Yamaguchi, K.; Shibasaki, M.; Noyori, R. Tetra-
hedron Lett. 2001, 42, 4669. (b) Kumaraswamy, G.; Sastry, M. N. V.;
Jena, N. Tetrahedron Lett. 2001, 42, 8515. (c) Kumaraswamy, G.;
Jena, N.; Sastry, M. N. V.; Padmaja, M.; Markondaiah, B. AdV. Synth.
Catal. 2005, 347, 867. (d) Kumaraswamy, G.; Jena, N.; Sastry,
M. N. V.; Ramakrishna, G. ARKIVOC 2005, 53. (e) For use of the Sr
catalyst see: Agostinho, M.; Kobayashi, S. J. Am. Chem. Soc. 2008,
130, 2430.
(10) Synthesis of R-amino acid derivatives: (a) Maruoka, K.; Ooi, T. Chem.
ReV. 2003, 103, 3013. (b) O’Donnel, M. J. Acc. Chem. Res. 2004, 37,
506. (c) Nájera, C.; Sansano, J. M. Chem. ReV. 2007, 107, 4584. (d)
Calaza, M. I.; Cativiela, C. Eur. J. Org. Chem. 2008, 3427.
(11) O’Donnell, M. J.; Boniece, J. M.; Earp, S. E. Tetrahedron Lett. 1978,
30, 2641.
(8) Asymmetric reactions using the Box ligand: Desimoni, G.; Faita, G.;
Jørgensen, K. A. Chem. ReV. 2006, 106, 3561.
(9) (a) Lowenthal, R. E.; Abiko, A.; Masamune, S. Tetrahedron Lett. 1990,
31, 6005. (b) Hall, J.; Lehn, J.-M.; DeCian, A.; Fischer, J. HelV. Chim.
Acta 1991, 74, 1. (c) Corey, E. J.; Wang, Z. Tetrahedron Lett. 1993,
34, 4001. (d) Brown, J. M.; Guiry, P. J.; Price, D. W.; Hursthouse,
M. B.; Karalulov, S. Tetrahedron: Asymmetry 1994, 5, 561. (e)
Nakamura, M.; Arai, M.; Nakamura, E. J. Am. Chem. Soc. 1995, 117,
1179. (f) Nakamura, M.; Hirai, A.; Nakamura, E. J. Am. Chem. Soc.
1996, 118, 8489. (g) Hoffmann, R. W.; Nell, P. G. Angew. Chem.,
Int. Ed. 1999, 38, 338. (h) Schulze, V.; Hoffmann, R. W. Chem.sEur.
J. 1999, 5, 337. (i) Görlitzer, H. W.; Spiegler, M.; Anwander, R.
J. Chem. Soc., Dalton Trans. 1999, 4287. (j) Ward, D. E.; Sales, M.;
Hrapchak, M. J. Can. J. Chem. 2001, 79, 1775. (k) Nakamura, M.;
Hara, K.; Hatakeyama, T.; Nakamura, E. Org. Lett. 2001, 3, 3137. (l)
Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J. Am. Chem. Soc. 2003,
125, 14768. (m) Hong, S.; Kawaoka, A. M.; Marks, T. J. J. Am. Chem.
Soc. 2003, 125, 15878. (n) Schulze, V.; Nell, P. G.; Burton, A.;
Hoffmann, R. W. J. Org. Chem. 2003, 68, 4546.
(12) (a) Corey, E. J.; Noe, M. C.; Xu, F. Tetrahedron Lett. 1998, 39, 5347.
(b) Zhang, F.-Y.; Corey, E. J. Org. Lett. 2000, 2, 1097. (c) Ishikawa,
T.; Araki, Y.; Kumamoto, T.; Seki, H.; Fukuda; Isobe, T. Chem.
Commun. 2001, 245. (d) O’Donnell, M. J.; Delgado, F. Tetrahedron
2001, 57, 6641. (e) Shibuguchi, T.; Fukuta, Y.; Akachi, Y.; Sekine,
A.; Ohshima, T.; Shibasaki, M. Tetrahedron Lett. 2002, 43, 9539. (f)
Arai, S.; Tsuji, R.; Nishida, A. Tetrahedron Lett. 2002, 43, 9535. (g)
Akiyama, T.; Hara, M.; Fuchibe, K.; Sakamoto, S.; Yamaguchi, K.
Chem. Commun. 2003, 1734. (h) Ohshima, T.; Shibuguchi, T.; Fukuta,
Y.; Shibasaki, M. Tetrahedron 2004, 60, 7743. (i) Lygo, B.; Allbutt,
B.; Kirton, E. H. M. Tetrahedron Lett. 2005, 46, 4461. (j) Arai, S.;
Takahashi, F.; Tsuji, R.; Nishida, A. Heterocycles 2006, 67, 495. (k)
Ryoda, A.; Yajima, N.; Haga, T.; Kumamoto, T.; Nakanishi, W.;
Kawahata, M.; Yamaguchi, K.; Ishikawa, T. J. Org. Chem. 2008, 73,
133.
(13) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc. 2007, 129,
5364.
9
13322 J. AM. CHEM. SOC. VOL. 130, NO. 40, 2008