Journal of the American Chemical Society
Page 8 of 9
1
2
3
4
5
6
7
8
9
(10) (a) Kirillova, M. S.; Miloserdov, F. M.; Echavarren, A. M.
Chem. Sci. 2013, 4, 2364–2368. (d) Hashimoto, S.; Katoh, S.-I.;
Kato, T.; Urabe, D.; Inoue, M. J. Am. Chem. Soc. 2017, 139, 16420–
16429.
(29) Sunazuka, T.; Yoshida, K.; Kojima, N.; Shirahata, T.; Hi-
rose, T.; Handa, M.; Yamamoto, D.; Harigaya, Y.; Kuwajima, I.;
Ōmura, S. Tetrahedron Lett. 2005, 46, 1459–1461.
(30) The direct one-carbon cleavage of aldehyde 21 was not
successful. For conditions see: Belotti, D.; Andreatta, G.; Pra-
daux, F.; BouzBouz, S.; Cossy J. Tetrahedron Lett. 2003, 44, 3613–
3615.
(31) For an alternative two step approach for allyl group two-
carbon degradation via ene reaction with DEAD see: Mason, J.
D.; Weinreb, S. M. Angew. Chem. Int. Ed. 2017, 32, 493.
(32) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron
1981, 37, 2091–2096.
Org. Chem. Front. 2018, 5, 273–287. (b) Arai, S.; Nakajima, M.;
Nishida, A. Total Synthesis of Lundurine and Related Alkaloids:
Synthetic Approaches and Strategies. In The Alkaloids: Chemistry
and Biology; Knölker, H.-J., Ed.; Academic Press: Cambridge,
MA, 2017; 78, 167–204.
(11) Kam, T.-S.; Lim, K.-H. Alkaloids of Kopsia. In The alkaloids
chemistry and biology; Cordell, G. A., Ed.; Academic Press: Lon-
don, 2008; 66, 1–111.
(12) Wessjohann, L. A.; Brandt, W.; Thiemann, T.; Chem. Rev.
2003, 103, 1625–1647.
(13) Li, T.; Huo, L.; Pulley, C.; Liu, A. Bioorg. Chem. 2012, 43, 2–
14.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) See Supporting Information for details.
(15) For a discussion about Brønsted acid effect in Au-
catalyzed alkyne hydroarylation with indole see: Zhang, L.;
Wang, Y.; Yao, Z.-J.; Wang, S.; Yu, Z.-X. J. Am. Chem. Soc. 2015,
137, 13290–13300.
(16) Escudero-Adán, E. C.; Benet-Buchholz, J.; Ballester, P. Ac-
ta Crystallogr. 2014, B70, 660–668.
(17) (a) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2003, 125,
7825–7827. (b) Denmark, S. E.; Fan, Y. J. Org. Chem. 2005, 70,
9667–9676.
(18) Bar, G.; Parsons, A. F. Chem. Soc. Rev. 2003, 32, 251–263.
(19) To the best of our knowledge there are only two other ex-
amples of 6-exo-trig radical spirocyclization on indole, which
occurred in 43%19a and 10-13%19b yield: (a) Flanagan, S. R.; Har-
rowven, D. C.; Bradley, M. Tetrahedron Lett. 2003, 44, 1795–1798.
(b) Bremner, J. B.; Sengpracha, W. Tetrahedron 2005, 61, 5489–
5498.
(20) (a) Furst, L.; Matsuura, B. S.; Narayanam, J. M. R.; Tucker,
J. W.; Stephenson, C. R. J. Org. Lett. 2010, 12, 3104–3107. (b)
Erdenebileg, U.; Demissie, T. B.; Hansen, J. H. Synlett 2017, 28,
907–912.
(21) (a) Revol, G.; McCallum, T.; Morin, M.; Gagosz, F.; Barri-
ault, L. Angew. Chem. Int. Ed. 2013, 52, 13342–13345. (b) Kaldas S.
J.; Cannillo, A.; McCallum, T.; Barriault, L. Org. Lett. 2015, 17,
2864–2866.
(22) DFT calculations were carried out using the Gaussian09
program package at PCM(acetonitrile or water)-B3LYP/6-
311+G(2d,2p)//B3LYP/6-31+G(d,p) level of theory.14
(23) (a) Devery III, J. J.; Douglas, J. J.; Nguyen, J. D.; Cole, K. P.;
Flowers II, R. A.; Stephenson, C. R. J. Chem. Sci. 2015, 6, 537–541.
(b) Xie, J.; Li, J.; Weingland, V.; Rudolph, M.; Hashmi, A. S. K.
Chem. Eur. J. 2016, 22, 12646–12650.
(24) (a) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 18, 1071–
1074. (b) Sugimori, T.; Horike, S.-i.; Tsumura, S.; Handa, M.;
Kasuga, K. Inorg. Chim. Acta 1998, 283, 275–278. (c) Magnus, P.;
Payne, A. H.; Waring, M. J.; Scott, D. A.; Lynch, V. Tetrahedron
Lett. 2000, 41, 9725–9730.
(33) Magnus, P.; Pappalardo, P. A. J. Am. Chem. Soc. 1986, 108,
212–217.
(34) Boscá, F.; Martínez-Mánez, R.; Miranda, M. A.; Primo, J.;
Soto, J.; Vaño, L. J. Pharm. Sci. 1992, 81, 479–482.
(35) Tanaka, M.; Ubukata, M.; Matsuo, T.; Yasue, K.; Matsu-
moto, K.; Kajimoto, Y.; Ogo, T.; Inaba, T. Org. Lett. 2007, 9, 3331–
3334.
(36) (a) Givens, R. S.; Oettle, W. F. J. Org. Chem. 1972, 37,
4325–4334. (b) Greene, A. E.; Muller, J.-C.; Ourisson, G. Tetrahe-
dron Lett. 1971, 12, 4147–4149.
(37) For the X-ray structures of kopsijasminilam-type com-
pounds see: Magnus, P.; Hobson, L. A.; Westlund, N.; Lynch, V.
Tetrahedron Lett. 2001, 42, 993–997.
(38) Similar activation of the amide via electrophilic attack at
the nitrogen atom was suggested to explain the high yield of the
Friedel-Crafts cyclization step in the Ziegler’s classic synthesis of
quebrachamine: (a) Ziegler, F. E.; Kloek, J. A.; Zoretic, P. A. J.
Am. Chem. Soc. 1969, 91, 2342–2346. (b) Amat, M.; Lozano, O.;
Escolano, C.; Molins, E.; Bosch, J. J. Org. Chem. 2007, 72, 4431–
4439.
(39) (a) N-acyl ammonium cations 29 might be also generated
in the course of the fragmentation of lahadinine-37 and kop-
sidasine-type39b,c natural compounds.14 (b) Magnus, P.; Gazzard,
L.; Hobson, L.; Payne, A. H.; Rainey, T. J.; Westlund, N.; Lynch,
V. Tetrahedron 2002, 58, 3423–3443. (c) Kuehne, M. E.; Li, Y.-L.;
Wei, C.-Q. J. Org. Chem. 2000, 65, 6434–6440.
(40) Hu, F.; Lalancette, R.; Szostak, M. Angew. Chem. Int. Ed.
2016, 55, 5062–5066.
(41) Similarly, the pyrrolidine-containing analogues of B and
B´ (14,15-dihydro; C and C´) were calculated, and analogously,
the cyclized form C´ was found to be 6.9 kcal/mol more stable
than open form C.14
(42) The photochemical decarboxylation of lactone 8 to cyclo-
propane provides a biomimetic entry to the lundurines, although
our previously developed synthetic scheme8 is superior in terms
of number of steps and overall efficiency.
(25) (a) Hosomi, A.; Sakurai, H.; Tetrahedron Lett. 1976, 16,
1295–1298. (b) Cela, J. A. J. Org. Chem. 1982, 47, 2125–2130.
(26) (a) Hosomi, A.; Iguchi, H.; Endo, M.; Sakurai, H. Chem.
Lett. 1979, 977–980. (b) Kim, H.; Lee, D. Synlett 2015, 26, 2583–
2587.
(27) For an example of one-pot radical indole functionaliza-
tion / benzylic C–C bond construction see: Alpers, D.; Hoff-
mann, F.; Brasholz, M. Synlett 2017, 28, 919–923.
(28) For examples of one-pot radical addition / allylSnR3 trap-
ping see: (a) Keck, G. E.; Kordik, C. P. Tetrahedron Lett. 1993, 34,
6875–6876. (b) Sibi, M. P.; Chen, J. J. Am. Chem. Soc. 2001, 123,
9472–9473. (c) Murai, K.; Katoh, S.-I.; Urabe, D.; Inoue, M.
Table of Contents graphic:
8
ACS Paragon Plus Environment