Our attention was drawn to the potential utility of nitro
aromatics which are easily accessible via arene nitration with
high degrees of predictable regioselection. Many are com-
mercially available at low cost (for example, the cost of
nitrobenzene compares favorably to benzene itself). Further-
more, there are a wide range of methods for either removal
or derivatization of the nitro functionality following direct
arylation cross-coupling.10 Herein we show that nitro-
substituted aromatics exhibit useful reactivity in direct
arylation and may be used in the synthesis of a variety of
functionalized biaryl molecules. The successful inclusion of
nitroarenes in the array of aromatic direct arylation coupling
partners also demonstrates the value associated with a
consideration of CMD entry points into direct arylation.
Initial screens were performed with 3-bromoanisole in
conjunction with 10 equiv of nitrobenzene. In early evalu-
ations, the use of apolar solvents, such as mesitylene or
octane provided superior outcomes compared to the more
common use of polar aprotic solvents such as N,N-dimeth-
ylformamide (DMA). While complete consumption of the
limiting reagent, 3-bromoanisole was observed in each case,
improved regioselectivity in favor of reaction at the ortho-
position, and cleaner reactivity is obtained in apolar sol-
vents.11
(5) For recent examples using Pd(II), see: (a) Beck, E. M.; Hatley, R.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2008, 47, 3004. (b) Wang, D.-H.;
Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190. (c) Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904. (d) Chiong,
H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879. For
recent examples using Rh(I), see: (e) Tsai, A. S.; Bergman, R. G.; Ellman,
J. A. J. Am. Chem. Soc. 2008, 130, 6316. (f) Proch, S.; Kempe, R. Angew.
Chem., Int. Ed. 2007, 46, 3135. (g) Ueura, K.; Satoh, T.; Miura, M. Org.
Lett. 2005, 7, 2229. (h) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J.
Am. Chem. Soc. 2006, 128, 11748. For recent examples using Ru, see: (i)
Ozdemir, I.; Demir, S.; C¸ etinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau,
C.; Dixneuf, P. H. J. Am. Chem. Soc. 2008, 130, 1156. (j) Ackermann, L.;
Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. (k) Ackermann, L.;
Althammer, A.; Born, R. Tetrahedron 2008, 64, 6115. (l) Phipps, R. J.;
Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172. (m) Do,
H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (n) Ackermann,
L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081.
(6) For reviews, see refs 3c and 3d. For recent examples, see: (a) Lane,
B. S.; Sames, D. Org. Lett. 2004, 6, 2897. (b) Li, W. J.; Nelson, D. P.;
Jensen, M. S.; Hoerrner, R. S.; Javadi, G. J.; Cai, D.; Larsen, R. D. Org.
Lett. 2003, 5, 4835. (c) Mori, A.; Sekiguchi, A.; Masui, K.; Shimada, T.;
Horie, M.; Osakada, K.; Kawamoto, M.; Ikeda, T. J. Am. Chem. Soc. 2003,
125, 1700. (d) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005,
127, 4996. (e) Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449. (f)
Turner, G. L.; Morris, J. A.; Greany, M. F. Angew. Chem., Int. Ed. 2007,
46, 7996. (g) Bellina, F.; Cauteruccio, S.; Rossi, R. J. Org. Chem. 2007,
72, 8543. (h) Pozˇgan, F.; Rogerm, J.; Doucet, H. ChemSusChem 2008, 1,
404.
Further reaction optimization revealed the crucial role of
base in these transformations. For example, treatment of
3-bromoanisole with 10 equiv of nitrobenzene in the presence
of 5 mol % of Pd(OAc)2, 15 mol % of PtBu2MeHBF4, 1.3
equiv of base, and 0-0.3 equiv of pivalic acid in mesitylene
at 125 °C provides highly variable outcomes depending on
the choice of base and the presence/absence of pivalic acid.
While the use of K3PO4 (Table 1, entry 1) does not induce
11
Table 1. Effect of Base and Pivalic Acida,
regioselectivity
(o/(m+p))b
entry base additive % conversion % yieldc
1
2
3
4
5
6
7
8
K3PO4
Cs2CO none
K2CO3 none
CsOPiv none
KOPiv none
none
0
52
73
22
19
65
100
100
0
28
43
10
0
(7) (a) Lafrance, M.; Shore, D.; Fagnou, K. Org. Lett. 2006, 8, 5097.
(b) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem.
Soc. 2006, 128, 8754.
27:1
5.1:1
1.7:1
1.8:1
6:1
(8) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005,
127, 18020. (b) Leclerc, J.-P.; Fagnou, K. Angew. Chem., Int. Ed. 2006,
45, 7781. (c) Campeau, L.-C.; Schipper, D; Fagnou, K. J. Am. Chem. Soc.
2008, 130, 3266. See also ref 4e.
7.2
K3PO4
PivOH
29
69
77
(9) (a) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008,
130, 10848. (b) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.;
Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066. (e) Davies, D. L.;
Donald, S. M. A.; Al-Duaij, O.; Macgregor, S. A.; Polleth, M. J. Am. Chem.
Soc. 2006, 128, 4210. (c) Garcia-Cuadrado, D.; de Mendoza, P.; Braga,
A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2007, 129,
6880.
Cs2CO3 PivOH
36:1
34:1
K2CO3
PivOH
a Conditions: PivOH (0 to 0.3 equiv), base (1.3 equiv), Pd(OAc)2 (5
mol %), and PtBu2MeHBF4 (15 mol %) were added sequentially to the
reaction vessel. ArBr (1.0 equiv), nitrobenzene (10 equiv), and mesitylene
(1.3 M) were added, and the reaction was heated to 125 °C for 16 h
(overnight). b Determined by GCMS analysis. c Isolated yield.
(10) For transformations of nitrobiphenyl into indole, see selected
examples: (a) Ragaini, F.; Rapetti, A.; Visentin, E.; Monzani, M.; Caselli,
A.; Cenini, S. J. Org. Chem. 2006, 71, 3748. (b) Bartoli, G.; Palmieri, G.
Tetrahedron Lett. 1989, 30, 2129. For transformations of nitrobiphenyl into
carbazole, see selected examples: (c) Sanz, R.; Escribano, J.; Pedrosa, M. R.;
Aguado, R.; Arna´iz, F. J. AdV. Synth. Catal. 2007, 349, 713. (d) Smitrovich,
J. H.; Davies, I. W. Org. Lett. 2004, 6, 533. For transformation of
nitrobiphenyl to 2-hyrdoxybiphenyl, see selected examples: (e) Boldt, P.;
Bruhnke, D.; Gerson, F.; Scholz, M.; Jones, J. G.; Ba¨r, F. HelV. Chim. Acta
1993, 76, 1739. For transformation of nitrobiphenyl into 2-aminobiphenyl,
see selected examples: (f) Tafesh, A. M.; Weiguny, J. Chem. ReV. 1996,
96, 2035. (g) McLaughlin, M. A.; Barnes, D. M. Tetrahedron Lett. 2006,
47, 9095. (h) Liu, Y.; Lu, Y.; Prashad, M.; Repie`, O.; Blacklock, T. J. AdV.
Synth. Catal. 2005, 347, 217. (i) Hanaya, K.; Muramatsu, T.; Kudo, H.;
Chow, Y. L. J. Chem. Soc., Perkin Trans. 1 1979, 10, 2409. (j) Vass, A.;
Dudas, J.; Toth, J.; Varma, R. S. Tetrahedron Lett. 2001, 42, 5347. (k)
Huber, D.; ermann, G.; Leclerc, G. Tetrahedron Lett. 1988, 29, 635. For
transformation of nitrobiphenyl into 2-cyanobiphenyl, 2-chlorobiphenyl and
2-bromobiphenyl, see selected examples: (l) Suzuki, N.; Azuma, T.; Kaneko,
Y.; Izawa, Y.; Tomioka, H.; Nomoto, T. J. Chem. Soc., Perkin Trans. 1
1987, 3, 645. (m) Lee, J. G.; Cha, H. T. Tetrahedron Lett. 1992, 33, 3167.
(n) Doyle, M. P.; Siegried, B.; Dellaria, J. F., Jr. J. Org. Chem. 1977, 42,
2426. (o) Roe, A.; Graham, J. R. J. Am. Chem. Soc. 1952, 74, 6297.
reaction, the use of carbonate bases leads to partial conver-
sion (Table 1, entries 2 and 3). Similarly, the use of
stoichiometric potassium and cesium pivalate provides low
conversions and isolated yields (Table 1, entries 4 and 5).
In contrast, the combined use of a carbonate base and pivalic
acid (generating the metal pivalate in situ) provides 100%
conversion and synthetically useful isolated yields of the
o-arylated biaryl compound (Table 1, entries 7 and 8).
Interestingly, the ortho/(meta+para) selectivity is also strongly
influenced by these same parameters. While relatively poor
(11) Incompete peak separation of the meta and para isomers in the
crude GCMS analysis prevents a more precise measure of these two isomers
separately. In most cases, the meta/para ratio was ∼2:1.
4534
Org. Lett., Vol. 10, No. 20, 2008