W. J. Moree et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5126–5129
5129
Table 5
Menissier-de Murcia, J.; de Murcia, G. Mol. Cell. Biochem. 1999, 193, 53; (g)
Wang, Z.; Auer, B.; Stingl, L.; Berghammer, H.; Haidacher, D.; Schweiger, M.;
Wagner, E. F. Genes Dev. 1995, 9, 509; (h) Sebolt-Leopold, J. S.; Scavone, S. V. Int.
J. Radiat. Oncol. Biol. Phys. 1992, 22, 619.
Chemosensitization, cell toxicity, and therapeutic index for compounds 6 and 17, 21–
23, and 27–29
Compound
ECsens
,
l
Ma
LD40
>50
,
lM
TIc
4. (a) Borek, C.; Morgan, W. F.; Ong, A.; Cleaver, J. E. Proc. Natl. Acad. Sci. U.S.A.
1984, 81, 243; (b) Suto, M. J.; Suto, C. M. Drugs Future 1991, 16, 723; (c) Griffin,
R. J.; Curtin, N. J.; Newell, D. R.; Golding, B. T.; Durkacz, B. W.; Calvert, A. H.
Biochimie 1995, 77, 408; (d) Miknyoczk, S. J.; Jones-Bolin, S.; Pritchard, S.;
Hunter, K.; Zhao, H.; Wan, W.; Ator, M.; Bihovsky, R.; Hudkins, R.; Chatterjee, S.;
Klein-Szanto, A.; Dionne, C.; Ruggeri, B. Mol. Cancer Ther. 2003, 2, 371; (e)
Calabrese, C. R.; Almassy, R.; Barton, S., et al J. Natl. Cancer Inst. 2004, 96, 56; (f)
Madhusudan, S.; Middleton, M. R. Cancer Treat. Rev. 2005, 31, 603.
5. (a) Zhang, J. Emerging Drugs 1999, 4, 209; (b) Sharp, C.; Warren, A.; Oshima, T.;
Williams, L.; Li, J. H.; Alexander, J. S. Inflammation 2001, 25, 157.
6
17
21
22
23
27
28
29
28.6
15.4
19.3
26.8
3.1 (1.3)
1.9 (1.2)
>1.8
1.4
1.4
1.6
3.6
>6.6
19.7
>32.9
21.2
27.2
42.5
11.2
>12.5b
7.5b
0.38 (0.15)
0.38 (0.21)
>12.5b
6. (a) Virag, J.; Bai, P.; Bak, I. Med. Sci. Monit. 2004, 10, BR77; (b) Liaudet, L.; Pacher,
P.; Mabley, J. G. Am. J. Respir. Crit. Care Med. 2002, 165, 372; (c) Veres, B.; Radnai,
B., ; Gallyas, F., Jr.; Varbiro, G.; Berente, Z.; Osz, E.; Sumegi, B. J. Pharmacol. Exp.
Ther. 2004, 310, 247; (d) Chiarugi, A. Br. J. Pharmacol. 2002, 137, 761.
7. For reviews see (a) Li, J.-H.; Zhang, J. Idrugs 2001, 4, 804; (b) Cosi, C. Expert Opin.
Ther. Patents 2002, 12, 1047; (c) Southan, G. J.; Szabo, C. Curr. Med. Chem. 2003,
10, 321; (d) Peukert, S.; Schwahn, U. Exp. Opin. Ther. Pat. 2004, 14, 1531.
8. Preliminary data of this series were first disclosed in: Moree, W. J.; Goldman, P.;
Demaggio, A. J.; Christenson, E.; Herendeen, D.; Eksterowicz, J.; Kesicki, E. A.;
McElligott, D. L.; Beaton, G.; Poster presentation at the 28th Medicinal
Chemistry Symposium, San Diego, CA, USA, June 8–12, 2002.
a
Values for quadruplicate experiments. Single determinations if ECsens values
were >10 uM.
b
c
Values of duplicate determinations are within twofold of each other.
In vitro therapeutic index (LD40/ECsens).
chemosensitization assay and displayed the most favorable thera-
peutic index. Addition of an aromatic group at R2 in compounds 28
and 29 appeared to accentuate chemosensitizer potency relative to
the dimethyl analog 27. Since analogs 27-29 exhibited similar en-
zyme potency in vitro, this result implies that other factors are
contributing to the enhanced potency of the aryl-substituted ana-
logs in the cell-based assay. Possible factors would include solubil-
ity and cellular permeability, which is consistent with the observed
lack of activity for compound 21 in cyclopentene subseries II.
In conclusion, tricyclic pyrazolo pyridin-2-ones containing a
non-aromatic carbocyle or heterocycle fused to the pyridin-2-one
were identified as a novel series of potent low nanomolar inhibi-
tors of PARP-1. Structure activity was further developed in the pyr-
azolo moiety resulting in the identification of analogs with
submicromolar activity in a chemosensitization assay.
9. 1H NMR (d6-DMSO) d 2.34 (3H, s, CH3–C), 3.77 (3H, s, CH3N), 3.97 (2H, t,
J = 3.2 Hz, CH2), 4.51 (2H, t, J = 3.2 Hz, CH2), 12.17 (1H, bs, NH). NOE observed
between s at 2.34 ppm and t at 4.51 ppm.
10. Suto, M. J.; Turner, W. R.; Arundel-Suto, C. M.; Werbel, L. M.; Sebolt-Leopold, J.
S. Anti-Cancer Drug Des. 1991, 6, 107.
11. (a) Ruf, A.; Menissier-de Murcia, J.; de Murcia, G. M.; Schulz, G. E. Proc. Natl.
Acad. Sci. U.S.A. 1996, 93, 7481; (b) Ruf, A.; de Murcia, G. M.; Schulz, G. E.
Biochemistry 1998, 37, 3893; (c) Costantino, G.; Macchiarulo, A.; Camaioni, E.;
Pellicciari, R. J. Med. Chem. 2001, 44, 3786.
12. Kappe, T.; Zadeh, R. K. Synthesis 1975, 4, 247.
13. Raban, M.; Martin, V. A.; Craine, L. J. Org. Chem. 1990, 55, 4311.
14. Ratajczyk, J. D.; Swett, L. R. J. Heterocycl. Chem. 1975, 12, 517.
15. (a) Winters, G.; Sala, A.; De Paoli, A.; Conti, M. Synthesis 1984, 12, 1050; (b)
Winters, G.; Sala, A.; De Paoli, A.; Ferri, V. Synthesis 1984, 12, 1052.
16. Synthesis of compound 28: 4-Cyclohex-1-enyl-2-methyl-5-phenyl-2H-
pyrazol-3-ylamine (13, n = 2, R1 = Me, R2 = Ph), prepared as described by
Winters et al.15a (50 mg, 0.20 mmol), was suspended in 800
treated with phenylisocyanate (26
l
l toluene and
l
l, 0.24 mmol).15b After stirring at rt for 3 h
The compounds described herein could be useful for further
studies on the role of PARP-1 inhibitors as adjunct agents in cancer
therapy.
and heating at 85 °C for 2.5 h, the mixture was concentrated in vacuo to give a
yellow oil. The crude product was heated at 200 °C for 5 min, cooled down to rt
and triturated with EtOAc (400 lL). The precipitate was filtered and washed
with EtOAc to yield 41 mg of 28 (72%). MS: m/z 280 [M+H]+, expected 280
[M+H]+. 1H NMR (d6-DMSO) d 1.46–1.56 (2H, m, CH2), 1.62–1.70 (2H, m, CH2),
2.36–2.47 (4H, m, CH2), 3.85 (3H, s, CH3N), 7.40–7.57 (5H, m, Ph), 8.63 (1H, bs,
NH).
Acknowledgments
17. Zeng, L.; Kassel, D. B. Anal. Chem. 1998, 70, 4380.
18. The ability of compounds to inhibit PARP-1 activity was tested in an assay
using PARP-1 enzyme isolated from HeLa cells. An eleven-point dilution series
The authors thank Dr. Mark J. Suto, Dr. Peter L. Myers, Dr. Kerry
W. Fowler and Dr. Michael Gallatin for support of this program, Dr.
Catherine Jolivet for NMR analysis, and Mr. Tao Wang for analytical
assistance.
ranging from 10 to 0.01
lM was prepared in singlet for each compound. Each
compound dilution was mixed with 100 ng of PARP-1 enzyme, 33 ng sheared
E. Coli Stain B Type VIII DNA (Sigma), 2.5 lM cold NAD (Sigma), and 2 lCi
[adenylate-32P]-NAD (NEN). The reaction components were incubated at room
temperature for 10 min, at which time the reactions were stopped with a
twofold volume of saturated ammonium sulfate. Reactions were filtered over
MAIP filter plates (Millipore), scintillation fluid was added, and the plates were
counted. IC50 were determined from the dilution curves.
References and notes
1. Pieper, A. A.; Verma, A.; Zhang, J.; Snyder, S. H. Trends Pharmacol. Sci. 1999, 20,
171.
19. Glide, version 4.0, Schrödinger, LLC New York, NY, 2005.
20. Steinhagen, H.; Gerisch, M.; Mittendorf, J.; Schlemmer, K-H.; Albrecht, B.
Bioorg. Med. Chem. Lett. 2002, 12, 3187.
21. The ability of PARP inhibitors to augment the cytotoxicity of the alkylating
agent streptozotocin (ICN Pharmaceuticals) was tested in the human colon
carcinoma HCT116 cell line (ATCC). PARP inhibitors and streptozotocin were
diluted in culture media and added to 96-well plates. HCT116 cells were
trypsinized and seeded into the plates at a final concentration of 1000 cells/
well. Plates were incubated in a 37 °C, 5% CO2 incubator for four days. Cells
were then labeled with [methyl-3H]-thymidine (NEN) at a concentration of
2. (a) Menissier-de Murcia, J.; Molinete, M.; Gradwohl, G.; Simonin, F.; de Murcia,
G. J. Mol. Biol. 1989, 210, 229; (b) Gradwohl, G.; Menissier-de Murcia, J.;
Molinete, M.; Simonin, F.; Koken, M.; Hoeijmakers, J. H. J.; de Murcia, G. Proc.
Natl. Acad. Sci. U.S.A. 1990, 87, 2990; (c) Zahradka, P.; Ebisuzaki, K. Eur. J.
Biochem. 1984, 142, 503.
3. (a) Menissier-de Murcia, J.; Niedergang, C.; Trucco, C.; Ricoul, M.; Dutrillaux, B.;
Mark, M.; Oliver, F. J.; Masson, M.; Dierich, A.; LeMeur, M.; Walztinger, C.;
Chambon, P.; de Murcia, G. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 7303; (b)
Eliasson, M. J. L.; Sampei, K.; Mandir, A. S.; Hurn, P. D.; Traystman, R. J.; Bao, J.;
Pieper, A.; Wang, Z.-Q.; Dawson, T. M.; Snyder, S. H.; Dawson, V. L. Nature Med.
1997, 3, 1089; (c) Mabley, J. G.; Suarez-Pinzon, W. L.; Hasko, G.; Salzman, A. L.;
Rabinovitch, A.; Kun, E.; Szabo, C. Br. J. Pharmacol. 2001, 133, 909; (d) Masutani,
M.; Nozaki, T.; Nishiyama, E.; Shimokawa, T.; Tachi, Y.; Suzuki, H.; Nakagama,
H.; Wakabayashi, K.; Sugimura, T. Mol. Cell. Biochem. 1999, 193, 149; (e)
Masutani, M.; Nozaki, T.; Nakamoto, K.; Nakagama, H.; Suzuki, H.; Kusuoka, O.;
Tsutsumi, M.; Sugimura, T. Mutat. Res. 2000, 462, 159; (f) Trucco, C.; Rolli, V.;
Oliver, F. J.; Flatter, E.; Masson, M.; Dantzer, F.; Niedergang, C.; Dutrillaux, B.;
1 lCi/well. The plates were incubated for another 24 h at 37 °C, 5% CO2. The
plates were harvested and then counted using a Matrix 96 Direct Beta Counter
(Packard). To compare the potency of PARP inhibitors, the concentration of
PARP inhibitor was calculated that reduced by half the amount of
chemotherapy agent required for 90% inhibition of cell growth (ECsens). The
concentration of PARP inhibitor that is significantly toxic as a single agent
(LD40) was also determined.