challenged substrates than unsubstituted ones for this formal
cycloaddition reaction.7 In this context, a strategy of combination
of cinchona alkaloid as Lewis base and lithium perchlorate or
lanthamide triflates as Lewis base was successfully employed.8
The intramolecular version of this reaction was also realized
by employing O-acetyl quinidine as catalyst.9
Formal Cycloaddition of Disubstituted Ketenes
with 2-Oxoaldehydes Catalyzed by Chiral
N-Heterocyclic Carbenes
Lin He, Hui Lv, Yan-Rong Zhang, and Song Ye*
Disubstituted ketenes are less reactive and become the most
challenging substrate for this process.10 Remarkably, Fu et al.
reported that planar-chiral 4-pyrrolidin-1-ylpyridine (1) was an
efficient catalyst for the formal cycloaddition of disubstituted
ketenes with aldehydes to furnish ꢀ-lactones in good yields with
excellent enantioselectivities (up to 91% ee) (eq 1).11 Although
this catalytic system worked very well for dialkylketenes, it
failed for alkyl(aryl)ketenes.
Beijing National Laboratory for Molecular Sciences,
Laboratory of Chemical Biology, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
ReceiVed July 7, 2008
Chiral N-hetereocyclic carbenes were found to be efficient
catalysts for the formal [2 + 2] cycloaddition reactions of
alkyl(aryl)ketenes with 2-oxoaldehydes to afford ꢀ-lactones
with R-quaternary-ꢀ-tertiary stereocenters in high yields with
good diastereoselectivities and excellent enantioselectivities
(up to 99% ee). Both alkyl(aryl)ketenes and diarylketene
worked well in this reaction.
Recently, N-heterocyclic carbenes (NHCs) were found to be
efficient organocatalysts for the umpolung of aldehydes for
benzoin reaction and Stetter reaction,12 extended umpolung of
functional aldehydes,13 intramolecular ꢀ-alkylation of Michael
acceptors,14 aza-Mortia-Baylis-Hillman reaction15 and many
other reations.16
Smith et al. and our group have independently reported that
NHCs were efficient catalysts for the formal cycloaddition of
(7) (a) Nelson, S. G.; Zhu, C.; Shen, X. J. Am. Chem. Soc. 2004, 126, 14.
(b) Shen, X.; Wasmuth, A. S.; Zhao, J.; Zhu, C.; Nelson, S. G. J. Am. Chem.
Soc. 2006, 128, 7438. (c) Nelson, S. G.; Wan, Z. Org. Lett. 2000, 2, 1883.
(8) (a) Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352.
(c) Calter, M. A.; Tretyak, O. A.; Flashchenriem, C. Org. Lett. 2005, 1809.
(9) (a) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001,
123, 7945. (b) Oh, S. H.; Cortez, G. S.; Romo, D. J. Org. Chem. 2005, 70,
2835. (c) Henry-Riyad, H.; Lee, c.; Purohit, V. C.; Romo, D. Org. Lett. 2006,
8, 4363.
(10) For asymmetric reactions of disubstituted ketenes, see: (a) Hodous, B. L.;
Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1999, 121, 2637. (b) Lee, E. C.;
Hodous, B. L.; Bergin, E.; Shih, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127,
11586. (c) Li, C.-Y.; Sun, X.-L.; Jing, Q.; Tang, Y. Chem. Commun. 2006, 2980.
(11) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2004, 43, 6358.
(12) (a) Ugai, T.; Tanaka, S.; Dokawa, S. J. Pharm. Soc. Jpn. 1943, 63,
296. (b) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719. (c) Stetter, H. Angew.
Chem., Int. Ed. 1976, 15, 639. (d) Enders, D.; Kallfass, U. Angew. Chem., Int.
Ed. 2002, 41, 1743. (e) Li, G. Q.; Dai, L.-X.; You, S.-L. Chem. Commun. 2007,
852.
(13) (a) Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506. (b) Burstein, C.;
Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. (c) Sohn, S. S.; Rosen, E. L.;
Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370. (d) Li, G.-Q.; Li, Y.; Dai,
L.-X.; You, S.-L. Org. Lett. 2007, 9, 3519. (e) Chan, A.; Scheidt, K. A. J. Am.
Chem. Soc. 2008, 130, 2740. (f) He, M.; Bode, J. W. J. Am. Chem. Soc. 2008,
130, 418. (g) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796. (h)
Nari, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006, 128,
8736.
The asymmetric [2 + 2] cycloaddition of ketenes with
aldehydes to construct optically active ꢀ-lactones has been
continuously pursued for decades.1 Chiral Lewis bases, Lewis
acids, and bifunctional catalysts have been employed for this
process. In 1982, Wynberg et al. published their pioneering work
of the highly enantioselective cinchona alkaloid-catalyzed formal
cycloaddition of unsubstituted ketene (CH2dCdO) with chlo-
ral.2 The asymmetric reaction of unsubstituted ketene with a
variety of aldehydes was then achieved by using an aluminum-
triamine complex catalyst,3 chiral oxazaborolidine catalyst,4 and
Lewis acid-Lewis base bifunctional catalyst.5 Bis(oxazoline)-
copper complexes were demonstrated to be efficient catalysts
for the reaction of silylketene (TMSCHdCdO) with chelating
carbonyl substrates.6 Alkylketenes were found to be more
(1) For synthesis and applications of ꢀ-lactones, see: (a) Schneider, C. Angew.
Chem., Int. Ed. 2002, 41, 744. (b) Yang, H. W.; Romo, D. Tetrahedron 1999,
55, 6403. (c) Wang, Y.; Tennyson, R. L.; Romo, D. Heterocycles 2004, 64,
605.
(2) Wynberg, H.; Staring, E. G. J. J. Am. Chem. Soc. 1982, 104, 166.
(3) (a) Nelson, S. G.; Peelen, T. J.; Wan, Z. J. Am. Chem. Soc. 1999, 121,
9742. (b) Nelson, S. G.; Kim, B.-K.; Peelen, T. J. J. Am. Chem. Soc. 2000, 122,
9318.
(14) Fisher, C.; Smith, S. W.; Powell, D. A.; Fu, G. C. J. Am. Chem. Soc.
2006, 128, 1472.
(4) Gnandesikan, V.; Corey, E. J. Org. Lett. 2006, 8, 4943.
(5) Lin, Y.-M.; Boucau, J.; Li, Z.; Casarotto, V.; Lin, J.; Nguyen, A. N.;
Ehrmantrau, J. Org. Lett. 2007, 9, 567.
(15) (a) He, L.; Jian, T.-Y.; Ye, S. J. Org. Chem. 2007, 72, 7466. (b) He, L.;
Zhang, Y.-R.; Huang, X.-L.; Ye, S. Synthesis 2008, 2825.
(16) For a recent comprehensive review, see: (a) Enders, D.; Niemeier, O.;
Henseler, A. Chem. ReV. 2007, 107, 5606.
(6) Evans, D. A.; Janey, J. M. Org. Lett. 2001, 3, 2125.
10.1021/jo801494f CCC: $40.75
Published on Web 09/25/2008
2008 American Chemical Society
J. Org. Chem. 2008, 73, 8101–8103 8101