5634
A. W. I. Stephenson et al. / Tetrahedron Letters 49 (2008) 5632–5635
All products were characterized using 1-D and 2-D 1H and 13C
NMR spectroscopy, mass spectrometry and UV–visible spectro-
scopy. All the data collected (cf. Supplementary data) were
consistent with the proposed structures.
the starting material. The X-ray crystal data showed that the dihe-
dral angle between the plane of the porphyrin core and the plane of
the aryl substituent was greater in the acetylene-linked molecule
compared to that in an ethylene analogue. Also, the electronic
properties indicated only a slight bathochromic shift of the acety-
lene analogue compared to the corresponding ethylene analogue.
Both these observations are the focus of an on-going DFT
investigation.
The electronic spectra (Fig. 1) showed that both the Soret and
the two Q bands of the carboxylic acid derivative Zn-7 were red
shifted to 1.5, 2.5 and 5.5 nm, respectively, relative to the equiva-
lent ethene compound.6 Although the red shift is less than in
previous examples, this is consistent with observations in other
b-alkyne porphyrin derivatives.38,12 Single crystals of Zn-5 suitable
for X-ray diffraction were obtained by slow diffusion of methanol
into a solution of Zn-5 in dichloromethane (Fig. 2).39 Against
expectations, the dihedral angle between the plane of the benzene
ring and the plane of best fit made by the porphyrin core was
31.98(16)°, and almost twice that of the value of the corresponding
angle in 4-(trans-20-(200-(500,1000,1500,2000-tetraphenylporphyrinato
copper(II)yl))ethen-10-yl)-1-benzaldehyde of 17(2)°.10 A density
functional theory (DFT) study is currently being undertaken in an
attempt to account for these observations.
Acknowledgements
The authors wish to acknowledge Dr. Wayne Campbell for his
assistance and the financial support from the MacDiarmid Institute
for Advanced Materials and Nanotechnology and the Royal Society
of NZ Marsden Fund.
Supplementary data
Supplementary data associated with this article can be found, in
In conclusion, the use of modified Horner–Emmons conditions
has provided a versatile method for synthesizing acetylene-linked
substituents on the b-pyrrolic position of TPP. This resulted in a
high yielding, scalable methodology that negated the need for a
metal catalyst and 2-bromo-5,10,15,20-tetraphenylporphyrin as
References and notes
1. Butler, W. L. Acc. Chem. Res. 1973, 6, 177–184.
2. Kay, A.; Grätzel, M. J. Phys. Chem. 1993, 97, 6272–6277.
3. Cherian, S.; Wamser, C. C. J. Phys. Chem. B 2000, 104, 3624–3629.
4. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 2001, 34, 40–48.
5. Odobel, F.; Blart, E.; Lagree, M.; Villieras, M.; Boujtita, H.; El Murr, N.; Caramori,
S.; Alberto Bignozzi, C. J. Mater. Chem. 2003, 13, 502–510.
6. Campbell, W. M.; Burrell, A. K.; Officer, D. L.; Jolley, K. W. Coord. Chem. Rev.
2004, 248, 1363–1379.
7. Wang, Q.; Campbell, W. M.; Bonfantani, E. E.; Jolley, K. W.; Officer, D. L.; Walsh,
P. J.; Gordon, K.; Humphry-Baker, R.; Nazeeruddin, M. K.; Grätzel, M. J. Phys.
Chem. B 2005, 109, 15397–15409.
8. Campbell, W. M.; Jolley, K. W.; Wagner, P.; Wagner, K.; Walsh, P. J.; Gordon, K.
C.; Schmidt-Mende, L.; Nazeeruddin, M. K.; Wang, Q.; Grätzel, M.; Officer, D. L.
J. Phys. Chem. C 2007, 111, 11760–11762.
9. Walsh, P. J.; Gordon, K. C.; Officer, D. L.; Campbell, W. M. Theochem 2006, 759,
17–24.
400
20
15
300
10
5
200
0
500
550
600
650
ε
100
0
10. Burrell, A. K.; Officer, D. L.; Reid, D. C. W. Angew. Chem., Int. Ed. Engl. 1995, 34,
900–902.
11. Bonfantini, E. E.; Burrell, A. K.; Officer, D. L.; Reid, D. C. W.; McDonald, M. R.;
Cocks, P. A.; Gordon, K. C. Inorg. Chem. 1997, 36, 6270–6278.
12. Vail, S. A.; Schuster, D. I.; Guldi, D. M.; Isosomppi, M.; Tkachenko, N.;
Lemmetyinen, H.; Palkar, A.; Echegoyen, L.; Chen, X.; Zhang, J. Z. H. J. Phys.
Chem. B 2006, 110, 14155–14166.
400
450
500
550
600
650
λ/nm
13. Annoni, E.; Pizzotti, M.; Ugo, R.; Quici, S.; Morotti, T.; Bruschi, M.; Mussini, P.
Eur. J. Inorg. Chem. 2005, 3857–3874.
Figure 1. Electronic absorption spectra of 2-(40-carboxyphenyl)ethynyl-5,10,15,20-
tetraphenylporphyrinato zinc(II) Zn-7 (thinner line), 4-(trans-20-(200-(500,1000,
1500,2000-tetraphenylporphyrinato zinc(II)yl)ethen-10-yl)-1-benzoic acid (thicker
line) and 2-(40-carboxyphenyl)ethynyl-5,10,15,20-tetraphenylporphyrinato zinc(II)
(dotted line) in DMF at 25 °C. The inset is an expansion of the Q-band region.
14. Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874–922.
15. Lembo, A.; Tagliatesta, P.; Guldi, D. M. J. Phys. Chem. A 2006, 110, 11424–11434.
16. Nath, M.; Pink, M.; Zaleski, J. M. J. Am. Chem. Soc. 2005, 127, 478–479.
17. Nath, M.; Huffman, J. C.; Zaleski, J. M. J. Am. Chem. Soc. 2003, 125, 11484–11485.
18. Chandra, T.; Kraft, B. J.; Huffman, J. C.; Zaleski, J. M. Inorg. Chem. 2003, 42, 5158–
5172.
19. Nath, M.; Huffman, J. C.; Zaleski, J. M. Chem. Commun. 2003, 858–859.
20. Aihara, H.; Jaquinod, L.; Nurco, D. J.; Smith, K. M. Angew. Chem., Int. Ed. 2001, 40,
3439–3441.
21. Gao, G.-Y.; Ruppel, J. V.; Allen, D. B.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2007, 72,
9060–9066.
22. Zhang, C.; Suslick, K. S. J. Porphyrins Phthalocyanines 2005, 9, 659–666.
23. Liu, C.; Shen, D. M.; Chen, Q.-Y. Chem. Commun. 2006, 770–772.
24. Takanami, T.; Hayashi, M.; Chijimatsu, H.; Inoue, W.; Suda, K. Org. Lett. 2005, 7,
3937–3940.
25. Ali, H.; Van Lier, J. E. Tetrahedron Lett. 1991, 32, 5015–5018.
26. Anderson, H. L.; Sanders, J. K. M. J. Chem. Soc., Chem. Commun. 1989, 1714–
1715.
27. Ljungdahl, T.; Pettersson, K.; Albinsson, B.; Maartensson, J. J. Org. Chem. 2006,
71, 1677–1687.
28. Wagner, P.; Partridge, A. C.; Jolley, K. W.; Officer, D. L. Tetrahedron Lett. 2007,
48, 6245–6248.
29. Katritzky, A. R.; Rogovoy, B. V.; Mitrokhin, A. Y. ARKIVOC 2002, 17–27.
30. Kondo, K.; Fujitani, T.; Ohnishi, N. J. Mater. Chem. 1997, 7, 429–433.
31. Gallagher, M. J.; Noerdin, H. Aust. J. Chem. 1985, 38, 997–1005.
32. Bonfantini, E. E.; Burrell, A. K.; Campbell, W. M.; Crossley, M. J.; Gosper, J. J.;
Harding, M. M.; Officer, D. L.; Reid, D. C. W. J. Porphyrins Phthalocyanines 2002,
6, 708–719.
33. Kondo, K.; Ohnishi, N.; Takemoto, K.; Yoshida, H.; Yoshida, K. J. Org. Chem. 1992,
57, 1622–1625.
34. Firouzabadi, H.; Iranpoor, N.; Sobhani, S. Tetrahedron 2004, 60, 203–210.
Figure 2. Crystal structure of 2-((40-formyl)phenyl)ethynyl-5,10,15,20-tetraphen-
ylporphyrinato zinc(II) (Zn-5) with methanol coordinated to zinc. The angle
between the benzene ring and the plane of best fit made by the porphyrin ring is
31.98(16)° (benzene rings omitted for clarity). The thermal ellipsoids were set at
50% probability level. The hydrogen atoms are drawn as spheres of arbitrary radii.