M. Ghandi et al. / Tetrahedron Letters 49 (2008) 5899–5901
5901
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Kurt, V.; Anker Gothelf, J. Chem. Rev. 1998, 98, 863–909.
2. Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765–2809.
3. (a) Oppolzer, W. Combining C–C Bonds. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, UK, 1991; Vol.
5, (Chapter 4.1); (b) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650.
4. March, J. Advanced Organic Chemistry, Reactions, Mechanisms and Structure, 3rd
ed.; John Wiley & Sons, 1985.
5. (a) George, B.; Imad, S.; Achmet, S. M.; Francis, B.; Joelle, L. Org. Lett. 2003, 5,
4915–4918; (b) Yu, G. G.; Yibo, X. A.; Chris, K.; Darold, M.; Hing, L. S.
Tetrahedron Lett. 2002, 43, 955–957; (c) Mahalingam, P.; Raghavachary, R.
Tetrahedron Lett. 2005, 46, 7197–7200.
6. Ekamabaram, R.; Murugavel, K.; Raghavachary, R. Tetrahedron Lett. 2007, 48,
1835–1839.
7. (a) Waldmann, H. Synlett 1995, 133; (b) Fujimori, S. Jap. Pat. Appl. 88, 2912.; (c)
Fujimori, S. Chem. Abstr. 1990, 112, 98409.
8. (a) Ponnusamy, S.; Baby, V.; Suchithra, M. Org. Lett. 2007, 9, 4095–4098; (b)
Nela, M.; Andrew, N. B.; Stephan, C.; Roberat, W. Tetrahedron Lett. 2006, 47,
5139–5142.
Figure 2. HMBC spectrum of compound 3a.
9. Modified procedure for the preparation of the 9-fluorenone-malononitrile adduct:
To a solution of 9-fluorenone (1 mmol) in absolute ethanol (5 mL) containing 3
drops of piperidine, malononitrile (1.1 mmol) was added and the reaction
mixture was stirred at room temperature for 30 min. The resulting orange
precipitate was then filtered and recrystallized from ethanol to afford the
product (yield 87%, mp: 230–232 °C).
10. Abdel-Rahman, A. H.; Keshk, E. M.; Hannab, M. A.; El-Bady, Sh. M. Bioorg. Med.
Chem. 2004, 12, 2483–2488.
11. Representative procedure for the preparation of fluorene spiro[9.40]-1-N-methyl
(20–arylidene)-30,30–dicyano-pyrrolidine:
A mixture of sarcosine (178 mg,
2.0 mmol), aldehyde (2.0 mmol), and 1 (456 mg, 2.0 mmol) in dry toluene
(20 mL) containing molecular sieves (1000 mg, 3 Å) was refluxed with stirring
for the appropriate time (see Scheme 2). The progress of the reaction was
followed by TLC. After completion, the solvent was removed under reduced
pressure and the resulting solid was recrystallized from methanol to afford a
white crystalline product.
12. Fluorene
spiro[9.40]-1-N-methyl(20–p-methylphenyl)-30,30–dicyano-pyrrolidine
(3a): White crystals, mp: 217–219 °C; 1H NMR (500 MHz, CDCl3) d 2.42 (s,
3H), 2.55 (s, 3H), 3.26 (d, J = 10.1 Hz, 1H), 3.73 (d, J = 10.1 Hz, 1H), 4.36 (s, 1H),
7.30–8.08 (m, 12H); 13C NMR (125 MHz, CDCl3) d 21.77, 40.04, 53.82, 60.71,
66.31, 79.92, 113.37, 114.02, 120.53, 120.97, 126.10, 126.75, 128.25, 128.50,
128.92, 129.99, 130.20, 130.24, 130.57, 140.41, 140.48, 141.30, 144.67, 146.10;
IR(KBr): 2245 cmꢀ1; mass m/z: 375 (M+); Anal. Calcd for C26H21N3: C, 83.2; H,
5.6; N, 11.2. Found: C, 83.12; H, 5.73; N, 11.35. Fluorene spiro [9.40]-1-N-
methyl(20–p-methylphenyl)-30,30–dicyano-pyrrolizine (5a): White crystals, mp:
234–237 °C; 1H NMR (500 MHz, CDCl3) d 1.51 (m, 1H), 1.63 (m, 1H), 2.13 (s,
3H), 2.18 (m, 2H), 2.88 (m, 1H), 3.26 (m, 1H), 4.85 (t, J = 6.3 Hz, 1H), 5.12 (s,
1H),7.05–8.04 (m, 12H); 13C NMR (125 MHz, CDCl3) d 21.34, 27.93, 30.06,
49.63, 52.69, 54.01, 67.75, 71.11, 112.92, 114.24, 120.69, 120.89, 121.48,
125.94, 127.37, 127.99, 128.10, 128.71, 129.95, 130.02, 130.48, 137.58, 139.04,
140.92, 141.56, 142.49; mass m/z: 401 (M+); Anal. Calcd for C28H23N3: C, 83.79;
H, 5.73; N,10.47. Found: C, 83.91; H, 5.84; N, 10.67.
Figure 3. ROSEY spectrum of compound 5a.
to other functionalities is currently under investigation in our re-
search group and is expected to furnish other new pyrrolidine
and pyrrolizine derivatives.
13. Crystallographic data for 3a have been deposited at the Cambridge
Crystallographic Data Centre with the deposition number CCDC 693980.
Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336 033; or e-mail:
deposit@ccdc.cam.ac.uk).
Acknowledgement
The authors thank the University of Tehran for financial support
of this research.