4772
B. A. Ellsworth et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4770–4773
the corresponding O-glucoside 4.30 We attribute the greater in vi-
3A
a
b,c,d
R
tro stability of 7a and the diminished variability in glucosuric re-
sponse across species to 7a being impervious to glucosidase
cleavage (unlike 4). Further discussion of the in vitro SAR and in
vivo efficacy of 7a and analogs leading to the discovery of dapagli-
flozin31 will be a subject of a subsequent publication.
Conclusions: A combination of the meta-aryl presentation of the
salient structural elements of compound 6 and SAR considerations
of the o-benzylaryl-O-glucosides represented by 4 led to the dis-
covery of the C-arylglucoside 7a as a potent SGLT2 inhibitor. A
comparison of the profile of the C-glucoside 7 to that of 4 reveals
greater selectivity versus SGLT1, as well as enhanced metabolic
stability. C-Arylglucosides show enhanced glucosuric activity in
rats compared to O-arylglucosides that we attribute, in part, to
the metabolic stability of the aryl-glucosyl C–C bond. Further
exploration of the in vitro SAR around compound 7a and in vivo re-
sults will be reported in due course.
I (A=CH2CH2)
Br
Br
Br
PPh3
3B
e
R
f,g
I (A=CH2CH2CH2)
Br
Br
b,c,d
O
O
3C
h
b,c
i
I (A = O)
Br
OH
Br
O
3D
j
b,c
k
I (A = S)
Br
Br
Br
S
Scheme 3. Construction of aglycones and conversion to compounds of formula I.
Reagents and conditions: (a) KHMDS, THF, RC6H4CHO (45–99%). (b) n-BuLi, THF,
ꢁ78 °C, then 8. (c) BF3OEt2, i-Pr3SiH, CH3CN, ꢁ40 °C (28–77% two steps). (d) H2,
Pd(OH)2/C, EtOAc (40–70%). (e) NaOH, MeOH, RC6H4CHO (100%). (f) NaBH4, MeOH
(99%). (g) BF3OEt2, Et3SiH, CH3CN, ꢁ40 °C (73%). (h) 4-CH3C6H4Br, Cu(OAc)2,
pyridine, TEA, 4 Å MS, CH2Cl2 (40%). (i) BBr3, CH2Cl2, ꢁ78 °C. (j) n-BuLi, (4-MePhS)2,
THF, ꢁ78 °C (51%). (k) BF3OEt2, EtSH (30%).
Acknowledgment
We thank Dr. Robert Zahler for thoughtful comments during the
preparation of this manuscript.
Table 1
26C-Aryglucoside (I) SAR exploration of the aglycone spacing element (A) and distal
ring substituent (R)
References and notes
1. (a) Skyler, J. S. J. Med. Chem. 2004, 47, 4113; (b) Mizuno, C. S.; Chittiboyina, A.
G.; Kurtz, T. W.; Pershadsingh, H. A.; Avery, M. A. Curr. Med. Chem. 2008, 15, 61.
2. Rossetti, L.; Smith, D.; Shulman, G. I.; Papachristou, D.; DeFronzo, R. A. J. Clin.
Invest. 1987, 79, 1510.
3. Asano, T.; Ogihara, T.; Katagiri, H.; Sakoda, H.; Ono, H.; Fujishiro, M.; Anai, M.;
Kurihara, H.; Uchijima, Y. Curr. Med. Chem. 2004, 11, 2717.
4. Santer, R.; Kinner, M.; Lassen, C. L.; Scheneppenheim, R.; Eggert, P.; Bald, M.;
Brodehl, J.; Daschner, M.; Ehrich, J. H. H.; Kemper, M.; Li Volti, S.; Neuhaus, T.;
Skovby, F.; Swift, P. G. F.; Schaub, J.; Klaerke, D. J. Am. Soc. Nephrol. 2003, 14,
2873; Wright, E. M.; Turk, E. Pflugers Arch. Eur. J. Physiol. 2004, 447, 510.
5. Kasahara, M.; Maeda, M.; Hayashi, S.; Mori, Y.; Abe, T. Biochim. Biophys. Acta
2001, 1536, 141.
R
A
HO
HO
HO
O
HO
I
Compound
A
R
hSGLT2
Select. vs.
hSGLT1
Synthetic method
Scheme #
(overall yield, %)
EC50 (nM)
6. Pascual, J. M.; Wang, D.; Lecumberri, B.; Yang, H.; Mao, X.; Yang, R.; De Vivo, D.
C. Eur. J. Endocrinol. 2004, 150, 627.
7. McKee, F. W.; Hawkins, W. B. Physiol. Rev. 1945, 25, 255.
8. Malathi, P.; Crane, R. K. Biochim. Biophys. Acta 1969, 173, 245.
9. Tsujihara, K.; Hongu, M.; Saito, K.; Kawanishi, H.; Kuriyama, K.; Matsumoto, M.;
Oku, A.; Ueta, K.; Tsuda, K.; Saito, A. J. Med. Chem. 1999, 42, 5311.
7a
7b
7c
CH2
CH2
CH2
4-Me
3-Me
H
22
>600
ND
>50
>13
ND
>30
ND
ND
>20
ND
ND
>13
>15
>100
10
1 (42)27
2B (12)
2B (9)
510
190
623
1200
290
710
970
430
480
1200
630
540
69
10a
10b
10c
11a
11b
11c
12a
12b
12c
13
Bond
Bond
Bond
(CH2)2
(CH2)2
(CH2)2
(CH2)3
(CH2)3
(CH2)3
O
H
1 (11)
3-Me
4-Me
H
3-Me
4-Me
H
3-Me
4-Me
4-Me
4-Me
2A (19)
2A (11)
3A (50)
3A (11)
3A (7)
10. Washburn, W. N., unpublished results.
11. Fujikura, H., Fushimi, N., Nishimura, T., Tatani, K., Katsuno, K., Hiratochi, M.,
Tokutake, Y., Isaji, M. Glucopyranosyloxy Benzylbenzene Derivatives,
Medicinal Compositions Containing the Same and Intermediates for the
Preparation of the Derivatives. In PCT. Kissei Pharmaceutical Co., Ltd, JP, 2001
12. By analogy to the method outlined in Scheme 2, compound 5 was synthesized
in 2.5% overall yield by addition of 2-bromobenzylmagnesium bromide to
lactone 8.
3A (6)
3B (14)
3A (20)
3C (2)
14
1
S
3D (7)
13. Link, J. T.; Sorensen, B. K. Tetrahedron Lett. 2000, 41, 9213.
14. Kishi, Y. Pure Appl. Chem. 1993, 65, 771.
35
4
8
160
50
350
1
4
15. Wang, Y.; Goekjian, P. G.; Ryckman, D. M.; Miller, W. H.; Babirad, S. A.; Kishi, Y.
J. Org. Chem. 1992, 57, 482.
16. Hongu, M.; Tanaka, T.; Funami, N.; Saito, K.; Arakawa, K.; Matsumoto, M.;
Tsujihara, K. Chem. Pharm. Bull. 1998, 46, 22.
1a
2a
Note: aEC50 data from Oku et al.28
17. Czernecki, S.; Ville, G. J. Org. Chem. 1989, 54, 610.
18. Bihovsky, R.; Selick, C.; Giusti, I. J. Org. Chem. 1988, 53, 4026.
19. Jaramillo, C.; Knapp, S. Synthesis 1994, 1.
20. Wai, J. S.; Egbertson, M. S.; Payne, L. S.; Fisher, T. E.; Embrey, M. W.; Tran, L. O.;
Melamed, J. Y.; Langford, M.; Guare, J. P. J.; Zhuang, L.; Grey, V. E.; Vacca, J. P.;
Holloway, M. K.; Naylor-Olsen, A. M.; Hazuda, D. J.; Felock, P. J.; Wolfe, A. L.;
Stillmock, K. A.; Schleif, W. A.; Gabryelski, L. J.; Young, S. D. J. Med. Chem. 2000,
43, 4923.
21. Benhaddou, R.; Czernecki, S.; Farid, W.; Ville, G.; Xie, J.; Zegar, A. Carbohydr. Res.
1994, 260, 243.
22. Ellsworth, B. A.; Doyle, A. G.; Patel, M.; Caceres-Cortes, J.; Meng, W.;
Deshpande, P. P.; Pullockaran, A.; Washburn, W. N. Tetrahedron: Asymmetry
2003, 14, 3243.
advantage conferred by the single methylene of 7a is further con-
firmed by the respective 3- and 25-fold reduction in affinity upon
replacement with a sulfur (14) or oxygen (13) bridging atom. Sig-
nificant inhibition of human SGLT1 was not observed for any of the
C-arylglucosides tested. In particular, the demonstrably high level
of selectivity of 7a is expected to preclude gastrointestinal side
effects.
Upon iv administration to rats and mice at 1 and 0.3 mg/kg,
respectively, 7a produced maximum glucosuric levels of 230 and
600 mg/dL.29 In contrast, upon administration of O-glucoside 4 un-
der the same conditions, efficacy in rats was reduced ꢀ50-fold rel-
ative to that obtained in mice. C-Arylglucoside 7a was found to be
ꢀ100-fold more stable in the presence of rat liver microsomes than
23. Stille, J. K. Angew. Chem., Int. Ed. Eng. 1986, 25, 508.
24. Xu, J.; Egger, A.; Bernet, B.; Vasella, A. Helv. Chim. Acta 1996, 79, 2004.
25. Swayze, E. E.; Drach, J. C.; Wotring, L. L.; Townsend, L. B. J. Med. Chem. 1997, 40,
771.
26. The intracellular accumulation of the SGLT-selective glucose analog [14C]-
alpha-methyl glucopyranoside (AMG) by CHO cells expressing the human
SGLT2 or the human SGLT1 transporter was quantified in vitro in the presence
and absence of inhibitors, using the following conditions: Each inhibitor,