Journal of the American Chemical Society
Article
sulfonamide directing groups can also be employed in the
developed asymmetric Suzuki reaction to produce the
corresponding chiral secondary fluoroalkanes with good ee;
however, the analogous 1-bromo-1-fluoroalkanes gave better
results in terms of yield and enantioselectivity under the same
conditions (eqs 2−4). We presume that the inferior results
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and compound characterization data.
This material is available free of charge via the Internet at
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial support from the German-Israeli Project Cooperation
(DIP) and KAMIN program of the Industry, Trade and Lab-
our Ministry is acknowledged. We thank Dr. Natalia Fridman
(Technion) and Dr. Linda J. W. Shimon (Weizmann Institute
of Science) for X-ray crystallography analysis.
REFERENCES
■
(1) (a) In Modern Fluoroorganic Chemistry; Kirsch, P., Ed.; Wiley-
VCH: Weinheim, 2004. (b) In Organofluorine Compounds; Hiyama,
T., Ed.; Springer: Berlin, 2000. (c) O’Hagan, D. Chem. Soc. Rev. 2008,
37, 308.
(2) For some examples, see: (a) Muller, K.; Faeh, C.; Diederich, F.
̈
Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.;
Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) In Fluorine in
Pharmaceutical and Medicinal Chemistry; Gouverneur, V., Muller, K.,
̈
Eds.; Imperial College Press: London, 2012.
(3) (a) Furuya, T.; Kuttruff, C. A.; Ritter, T. Curr. Opin. Drug
Discovery Dev. 2008, 11, 803. (b) Hollingworth, C.; Gouverneur, V.
Chem. Commun. 2012, 48, 2929. (c) In Efficient preparation of fluorine
compounds; Roesky, H. W., Ed.; John Wiley & Sons: Hoboken, NJ,
2013. (d) For recent progress in aromatic fluorination, see: Watson,
D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel,
T.; Buchwald, S. L. Science 2009, 325, 1661. (e) Furuya, T.; Klein, J. E.
M. N.; Ritter, T. Synthesis 2010, 1804. (f) Guo, C.; Wang, R.-W.; Guo,
Y.; Qing, F.-L. J. Fluorine Chem. 2012, 133, 86. (g) Guo, Y.; Tao, G.-H;
Blumenfeld, A.; Shreeve, J. M. Organometallics 2010, 29, 1818.
(h) Wang, W.; Jasinski, J.; Hammond, G. B.; Xu, B. Angew. Chem., Int.
Ed. 2010, 49, 7247. (i) Zhang, W.; Hu, J. Adv. Synth. Catal. 2010, 352,
2799.
(4) Reviews: (a) Gouverneur, V.; Lozano, O. In Science of Synthesis;
De Vries, J. G., Molander, G. A., Evans, P. A., Eds.; Georg Thieme:
Stuttgart, Germany, 2011; Vol. 3, p 851. (b) Cahard, D.; Xu, X.;
Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558.
(c) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013,
52, 8214. (d) Lectard, S.; Hamashima, Y.; Sodeoka, M. Adv. Synth.
observed for 1-iodo-1-fluoroalkanes, compared to their 1-
bromo-1-fluoro counterparts, may be due to the comparative
instability of the former. This may lead to release of trace
amounts of iodine in the starting material that partially poisons
the Ni catalyst.13 In the case of the 1-chloro-1-fluoroalkanes,
the difficulty of cleaving the stronger C−Cl bond may account
for the slightly poorer results.
CONCLUSIONS
■
We established a novel general method for efficient catalytic
preparation of β-, γ-, δ-, and ε-fluoroalkanes bearing a distant
chiral CHF center at the selected position.20 It includes the first
examples of enantioselective synthesis of chiral fluorine-
containing centers at as distant as δ or ε positions from the
directing functional groups. Our approach is general in a sense
that the generation of a F-bearing stereogenic center at all these
positions implies the same strategy, namely, a stereoconvergent
cross-coupling of the corresponding racemic 1-halo-1-fluoroal-
kanes with alkylboranes. Moreover, the same commercially
available chiral ligand, which was identified by us for the
asymmetric cross-couplings of geminal dihaloalkanes, is used in
all cases. We demonstrated that phenyl, keto (for the first
time), or sulfonamide substituents can be used as directing
groups for chiral recognition in the alkyl−alkyl cross-couplings
to generate unactivated fluoroalkanes with good enantioselec-
tivity. Although our approach opened a door for unprecedented
synthesis of chiral fluoroalkanes with distant chiral CHF
centers, the yield or enantioselectivity is moderate in some
cases. Therefore, further studies on ligand design for the
improvement of both efficiency and substrate scope of this
reaction is underway in our laboratories.
́
Catal. 2010, 352, 2708. (e) Valero, G.; Companyο, X.; Rios, R.
Chem.Eur. J. 2011, 17, 2018.
(5) Examples of α-fluorination of aldehydes: (a) Beeson, T. D.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826. (b) Steiner, D.
D.; Mase, N.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2005, 44, 3706.
(c) Marigo, M.; Fidlenbach, D.; Braunton, A.; Kjærsgaard, A.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 3703.
(6) Examples of α-fluorination of ketones and amides: (a) Shibata,
N.; Kohno, J.; Takai, K.; Ishimaru, T.; Nakamura, S.; Toru, T.;
Kanemasa, S. Angew. Chem., Int. Ed. 2005, 44, 4204. (b) Nakamura,
M.; Hajra, A.; Endo, K.; Nakamura, E. Angew. Chem., Int. Ed. 2005, 44,
́
́
7248. (c) Belanger, E.; Cantin, K.; Messe, O.; Tremblay, M.; Paquin,
J.-F. J. Am. Chem. Soc. 2007, 129, 1034. (d) Ishimaru, T.; Shibata, N.;
Horikawa, T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. Angew.
Chem., Int. Ed. 2008, 47, 4157. (e) Wu, L.; Falivene, L.; Drinkel, E.;
Grant, S.; Linden, A.; Cavalla, L.; Dorta, R. Angew. Chem., Int. Ed.
2012, 51, 2870. (f) Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc. 2013,
135, 1268. (g) Yang, X.; Phipps, R. J.; Toste, F. D. J. Am. Chem. Soc.
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX