y Chiral HPLC conditions: Chiracel OJ-H, hexane–IPA (90 : 10), 1 mL
minꢀ1, l = 254 nm; tR [(R)-9] = 36.3 min, tR [(S)-9] = 41.9 min.
1 (a) R. L. Giles, J. A. K. Howard, L. G. F. Patrick, M. R. Probert,
G. E. Smith and A. Whiting, J. Organomet. Chem., 2003, 680,
257–262; (b) S. W. Coghlan, R. L. Giles, J. A. K. Howard, L. G. F.
Patrick, M. R. Probert, C. E. Smith and A. Whiting, J. Organomet.
Chem., 2005, 690, 4784–4793; (c) D. Herault, K. Aelvoet, A. J.
Blatch, A. Al-Majid, C. A. Smethurst and A. Whiting, J. Org.
Chem., 2007, 72, 71–75; (d) A. S. Batsanov, D. Herault, J. A. K.
Howard, L. G. F. Patrick, M. R. Probert and A. Whiting,
Organometallics, 2007, 26, 2414–2419.
2 (a) K. Arnold, B. Davies, R. L. Giles, C. Grosjean, G. E. Smith
and A. Whiting, Adv. Synth. Catal., 2006, 348, 813–820; (b) K.
Arnold, A. S. Batsanov, B. Davies and A. Whiting, Green Chem.,
2008, 10, 124–134; (c) K. Arnold, B. Davies, D. Herault and A.
Whiting, Angew. Chem., Int. Ed., 2008, 47, 2673–2676.
3 K. Aelvoet, A. S. Batsanov, A. J. Blatch, C. Grosjean, L. G. F.
Patrick, C. A. Smethurst and A. Whiting, Angew. Chem., Int. Ed.,
2008, 47, 768–770.
Scheme 2 Proposed mechanism of action of catalyst 2 and its diol
ester derivatives.
and that pyrrolidine reactivity (entry 10, Table 2) is reduced by the
presence of a boronic acid (entry 12, Table 2) (which is also
unreactive, (entry 11, Table 2). In order to answer the question as
to whether the boronate function has a major impact upon the
stereochemistry-controlling step, match/mismatch stereochemical
effects18 were investigated by in situ boronate esterification (entries
13–17, Table 2). When catalyst 2 was esterified (assisted by
molecular sieves) with either enantiomer of diisopropyl tartrate,
essentially identical results were obtained (entries 13 and 14,
Table 2), and the ee was amplified to 90 from 38%. The lack of
matching or mismatching effects demonstrates that the absolute
stereoselection of homoboroproline 2 is controlled by the sub-
stituted-pyrrolidine and not the boronate. Indeed, steric effects
around the tartrate have no influence (entry 15, Table 2) since
diethyl tartrate provides an identical ee to the diisopropyl tartrate
(entry 13, Table 2). This less hindered diethyl ester is more reactive
(87% conversion in 20 h, vs. 65% for the more hindered ester)
which reinforces the finding that the major effect is neither
stereochemical nor steric, but entirely electronic. Hence, the overall
effect of the boronate group is to assist aldehyde activation and
aldol transition state is predicted to be tightened by a more Lewis
acidic boron (i.e. via Scheme 2). This is confirmed by in situ
formation of the catechol ester (entry 16, Table 2); the ee is
roughly double that of the free boronic acid (70%). This is a slow
reaction which may result from competitive ‘‘ate’’-complex for-
mation with hydroxide or catechol anion. The balance between
increasing boronate Lewis acidity through tartrate ester formation
vs.the need for water to be present for catalyst turnover is
exemplified in entries 13 and 17 (Table 2). Better catalyst turnover
(98% conversion, 20 h) is assisted by not drying the reaction (no
molecular sieves, entry 17); a slower reaction results from drying.
Steric effects at boron were confirmed by use of pinacol ester 7
since no improvement in ee was observed (Table 2, entry 18 vs.
entry 3). Indeed, (S)-7 merely causes increased dehydration to
derive the chalcone (36%). Finally, there is reinforcement of the
importance of a transition state such as 117 (Scheme 2) in these
reactions involving 2, since esterification of 1 with a tartrate fails to
switch on catalyst reactivity (entry 19, Table 2) and results in
almost complete catalyst deactivation.
4 B. List, R. A. Lerner and C. F. Barbas III, J. Am. Chem. Soc.,
2000, 122, 2395–2396.
5 (a) Z. G. Hajos and D. R. Parrish, J. Org. Chem., 1974, 39,
1615–1621; (b) U. Eder, G. Sauer and R. Wiechert, Angew. Chem.,
Int. Ed. Engl., 1971, 10, 496–497.
6 (a) B. List, Synlett, 2001, 11, 1675–1686; (b) H. Groger and J.
Wilken, Angew. Chem., Int. Ed., 2001, 40, 529–532; (c) B. List, Acc.
Chem. Res., 2004, 37, 548–557; (d) B. List, Tetrahedron, 2002, 58,
5573–5590; (e) W. Notz, F. Tanaka and C. F. Barbas III, Acc.
Chem. Res., 2004, 37, 580–591; (f) J. Seayad and B. List, Org.
Biomol. Chem., 2005, 3, 719–724; (g) B. List, Chem. Commun.,
2006, 819–824.
7 (a) H. Iwamura, D. H. Wells, Jr, S. P. Mathew, M. Klussmann, A.
Armstrong and D. G. Blackmond, J. Am. Chem. Soc., 2006, 126,
16312–16313; (b) B. List, L. Hoang and H. J. Martin, Proc. Natl.
Acad. Sci. U. S. A., 2004, 101, 5839–5842; (c) S. Bahmanyar, K. N.
Houk, H. J. Martin and B. List, J. Am. Chem. Soc., 2003, 125,
2475–2479; (d) L. Hoang, S. Bahmanyar, K. N. Houk and B. List,
J. Am. Chem. Soc., 2003, 125, 16–17; (e) K. N. Rankin, J. W.
Gauld and R. J. Boyd, J. Phys. Chem. A, 2002, 106, 5155–5159; (f)
S. Bahmanyar and K. N. Houk, J. Am. Chem. Soc., 2001, 123,
11273–11283, and references herein.
8 (a) Z. Tang, F. Jiang, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang
and Y.-D. Wu, Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
5755–5760; (b) Z. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong,
A.-Q. Mi, Y.-Z. Jiang and Y.-D. Wu, J. Am. Chem. Soc., 2003,
125, 5262–5263; (c) S. Sathapornvajana and T. Vilaivan, Tetra-
hedron, 2007, 63, 10253–10259.
9 A. S. Batsanov, C. Grosjean, T. Schutz and A. Whiting, J. Org.
Chem., 2007, 72, 6276–6279.
10 (a) D. Matteson and K. M. Sadhu, J. Am. Chem. Soc., 1983, 105,
2077–2078; (b) H. C. Brown, S. M. Singh and M. V. Rangaishenvi,
J. Org. Chem., 1986, 51, 3150–3155.
11 D. Font, C. Jimeno and M. A. Pericas, Org. Lett., 2006, 8, 4653–4655.
12 (a) S. T. Kerrick and P. Beak, J. Am. Chem. Soc., 1991, 113,
9708–9710; (b) P. Beak, S. T. Kerrick, S. Wu and J. Chu, J. Am.
Chem. Soc., 1994, 116, 3231–3239; (c) K. M. Bertini Gross and P.
Beak, J. Am. Chem. Soc., 2001, 123, 315–321; (d) M. C. Whistler, S.
MacNeil, V. Snieckus and P. Beak, Angew. Chem., Int. Ed., 2004, 43,
2206–2225.
Proline and its derivatives are general catalysts for a wide range
of asymmetric C–C bond forming reactions. The systems reported
herein which are readily accessible catalysts based on homoboro-
proline are tunable in situ and they provide the enantiomeric aldol
products to those derived from L-proline, and in high ee (90% for
a 94% ee catalyst). Furthermore, there is considerable scope for
the development of systems related to 2 which rely on the
cooperative enamine–Lewis acid catalysis.
13 M. J. McGrath, J. L. Bilke and P. O’Brien, Chem. Commun., 2006,
2607–2609.
14 R. J. Mears and A. Whiting, Tetrahedron, 1993, 49, 177–186.
15 M. E. Jung and T. I. Lazarova, J. Org. Chem., 1999, 64, 2976–2977.
16 S. Mitsumori, H. Zhang, P. Ha-Yeon Cheong, K. N. Houk, F.
Tanaka and C. F. Barbas, J. Am. Chem. Soc., 2006, 128,
1040–1041.
17 (a) D. Braghiroli, R. Avallone and M. Di Bella, Tetrahedron:
Asymmetry, 1997, 8, 2209–2213; (b) G. Cardillo, L. Gentilucci,
A. Qasem, F. Sgarzi and S. Spampinato, J. Med. Chem., 2002, 45,
2571–2578; (c) M. Kurokawa, T. Shindo, M. Suzuki, N. Nakajima,
K. Ishihara and T. Sugai, Tetrahedron: Asymmetry, 2003, 14,
1323–1334.
Notes and references
z GC conditions: CP-Chiralsil-Dex-CB column (35 m ꢃ 0.25 mm ꢃ
0.25 mm), 128 1C, FID, tR (S) = 124 min; tR (R) = 127 min.
18 S. Masamune, B. M. Kim, J. S. Petersen, T. Sato and S. J.
Veenstra, J. Am. Chem. Soc., 1985, 107, 4549–4551.
ꢂc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 3879–3881 | 3881