Organic Letters
Letter
Subsequently, the radical is captured by the intramolecular
copper(II) species to afford the copper adduct IV, which then
undergoes reductive elimination to regenerate the active
copper species and produces the 3H-pyrroles. Finally, 2,5-
disubstituted pyrrole 3 is achieved via the isomerization of the
3H-pyrrole. For the synthesis of the 2,3,4-trisubstituted pyrrole
(path b), the CuNPs initially react with the terminal alkyne to
form a copper acetylide V. Subsequently, the 2H-azirine
undergoes a nucleophilic ring opening with copper acetylide V,
resulting in the iminyl copper intermediate VI, which is
protonated to give the NH imine (detected by GCMS; see SI).
Then the iminyl copper intermediate VI reacts with another
2H-azirine molecule, leading to intermediate VII and VIII,
which are keto−enol tautomers. Intramolecular cyclization of
VIII furnishes intermediate IX, which undergoes protonolysis
to release intermediate X along with the initial copper species.
Further elimination of NH3 and isomerization provide the
2,3,4-trisubstituted pyrrole 5.
In conclusion, we have developed a nano copper-catalyzed
switchable reaction to assemble 2,5-disubstituted pyrroles and
2,3,4-trisubstituted pyrroles with simple and readily accessible
starting materials. The utilization of inexpensive, readily
available, recyclable, and environmentally friendly a copper
nanoparticle catalyst makes this reaction particularly attractive.
Further efforts to elucidate the detailed mechanism and to
explore the difference between common alkynes and silylated
alkynes are currently underway in our laboratory.
REFERENCES
■
(1) For reviews, see: (a) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res.
2015, 48, 1040−1052. (b) Modha, S. G.; Mehta, V. P.; Van der
Eycken, E. Chem. Soc. Rev. 2013, 42, 5042−5055. (c) Shimada, S.;
Rao, M. L. N. Top. Curr. Chem. 2011, 311, 199−228. (d) Cho, S. H.;
Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068−5083.
(e) Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435−
2452. (f) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534−1544.
(g) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461−1473.
(h) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874−922.
(i) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400−
5499.
(2) For selected examples, see: (a) Stokes, B. J.; Dong, H.; Leslie, B.
E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500−
7501. (b) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570−
12572. (c) Wang, Y.-F.; Toh, K. K.; Ng, E. P. J.; Chiba, S. J. Am.
Chem. Soc. 2011, 133, 6411−6421. (d) Chen, F.; Shen, T.; Cui, Y.;
Jiao, N. Org. Lett. 2012, 14, 4926−4929. (e) Kanchupalli, V.;
Katukojvala, S. Angew. Chem., Int. Ed. 2018, 57, 5433−5437. (f) Li, Z.;
Huo, T.; Li, L.; Feng, S.; Wang, Q.; Zhang, Z.; Pang, S.; Zhang, Z.;
Wang, P.; Zhang, Z. Org. Lett. 2018, 20, 7762−7766. (g) Lei, W.-L.;
Feng, K.-W.; Wang, T.; Wu, L.-Z.; Liu, Q. Org. Lett. 2018, 20, 7220−
7224.
(3) For selected examples, see: (a) Gu, P.; Su, Y.; Wu, X.-P.; Sun, J.;
Liu, W.; Xue, P.; Li, R. Org. Lett. 2012, 14, 2246−2249. (b) Hassner,
A.; Fowler, F. W. J. Org. Chem. 1968, 33, 2686−2691. (c) Zhu, W.;
Ma, D. Chem. Commun. 2004, 888−889. (d) Li, X.; Liao, S.; Wang,
Z.; Zhang, L. Org. Lett. 2017, 19, 3687−3690. (e) Liu, Z.; Liao, P.; Bi,
X. Org. Lett. 2014, 16, 3668−3671. (f) Liu, Z.; Liu, J.; Zhang, L.; Liao,
P.; Song, J.; Bi, X. Angew. Chem., Int. Ed. 2014, 53, 5305−5309.
(4) For reviews, see: (a) Jung, N.; Brase, S. Angew. Chem., Int. Ed.
2012, 51, 12169−12171. (b) Hu, B.; DiMagno, S. G. Org. Biomol.
Chem. 2015, 13, 3844−3855. (c) Hayashi, H.; Kaga, A.; Chiba, S. J.
Org. Chem. 2017, 82, 11981−11989. (d) Fu, J.; Zanoni, G.; Anderson,
E. A.; Bi, X. Chem. Soc. Rev. 2017, 46, 7208−7228.
(5) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565−632.
(6) (a) Wittig, G.; Krebs, A. Chem. Ber. 1961, 94, 3260−3275.
(b) Sletten, E. M.; Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 666−676.
(7) For selected examples, see: (a) Namba, K.; Osawa, A.; Ishizaka,
S.; Kitamura, N.; Tanino, K. J. Am. Chem. Soc. 2011, 133, 11466−
11469. (b) Yoshida, S.; Hatakeyama, Y.; Johmoto, K.; Uekusa, H.;
Hosoya, T. J. Am. Chem. Soc. 2014, 136, 13590−13593. (c) Wang,
W.; Peng, X.; Wei, F.; Tung, C.-H.; Xu, Z. Angew. Chem., Int. Ed.
2016, 55, 649−653. (d) Johansson, J. R.; Beke-Somfai, T.;
Stalsmeden, A. S.; Kann, N. Chem. Rev. 2016, 116, 14726−14768.
(e) Song, W.; Zheng, N.; Li, M.; Dong, K.; Li, J.; Ullah, K.; Zheng, Y.
Org. Lett. 2018, 20, 6705−6709. (f) Ding, S.; Jia, G.; Sun, J. Angew.
Chem., Int. Ed. 2014, 53, 1877−1880. (g) Song, W.; Zheng, N. Org.
Lett. 2017, 19, 6200−6203. (h) Kim, W. G.; Kang, M. E.; Lee, J. B.;
Jeon, M. H.; Lee, S.; Lee, J.; Choi, B.; Cal, P. M. S. D.; Kang, S.; Kee,
J.-M.; Bernardes, G. J. L.; Rohde, J.-U.; Choe, W.; Hong, S. Y. J. Am.
Chem. Soc. 2017, 139, 12121−12124.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, condition screening table,
characterization data, and copies of NMR spectra for
Accession Codes
CCDC 1865535 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
(8) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057−3064. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V.
V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596−2599.
(9) (a) Cen, J.; Li, J.; Zhang, Y.; Zhu, Z.; Yang, S.; Jiang, H. Org.
Lett. 2018, 20, 4434−4438. (b) Zhu, Z.; Tang, X.; Li, X.; Wu, W.;
Deng, G.; Jiang, H. J. Org. Chem. 2016, 81, 1401−1409. (c) Zhu, Z.;
Tang, X.; Li, J.; Li, X.; Wu, W.; Deng, G.; Jiang, H. Org. Lett. 2017, 19,
1370−1373.
(10) For selected examples, see: (a) Liu, Z.; Liao, P.; Bi, X. Org. Lett.
2014, 16, 3668−3671. (b) Kupracz, L.; Hartwig, J.; Wegner, J.;
Ceylan, S.; Kirschning, A. Beilstein J. Org. Chem. 2011, 7, 1441−1448.
(11) For selected examples, see: (a) Farney, E. P.; Yoon, T. P.
Angew. Chem., Int. Ed. 2014, 53, 793−797. (b) Pawar, S. K.; Sahani, R.
L.; Liu, R.-S. Chem. - Eur. J. 2015, 21, 10843−10850. (c) Wu, Y.; Zhu,
L.; Yu, Y.; Luo, X.; Huang, X. J. Org. Chem. 2015, 80, 11407−11416.
(d) Xu, H.; Zhou, H.; Pan, Y.; Ren, X.; Wu, H.; Han, M.; Han, R.;
Shen, M. Angew. Chem., Int. Ed. 2016, 55, 2540−2544. (e) Liu, Z.; Ji,
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors thank the National Key Research and Develop-
ment Program of China (2016YFA0602900), the National
Natural Science Foundation of China (21420102003 and
21642005), and the Fundamental Research Funds for the
Central Universities (2018ZD16).
D
Org. Lett. XXXX, XXX, XXX−XXX