Paper
and N. Asao, Chem. Rev., 1993, 93, 2207–2293;
NJC
9 (a) H. Mattes and C. Benezra, Tetrahedron Lett., 1985,
26, 5697; (b) J. Y. Zhou, G. D. Lu and S. H. Wu, Synth.
Commun., 1992, 22, 481.
(c) A. V. Malkov and O. P. Koc, Eur. J. Org. Chem., 2007,
29–36; (d) L. F. Tietze, T. Knizel and C. C. Brazel, Acc. Chem.
Res., 2009, 42, 367–378; (e) M. Yus, J. C. Gonzalez-Gomez and 10 S. R. Wilson and M. E. Guazzaroni, J. Org. Chem., 1989,
F. Foubelo, Chem. Rev., 2013, 113, 5595–5698; ( f ) P.-S. Wang,
M.-L. Shen and L.-Z. Gong, Synthesis, 2018, 956–967.
2 (a) Y. Yamamoto and K. Maruyama, Heterocycles, 1982,
54, 3087.
11 A. Durant, J. L. Delplancke, R. Winand and J. Reisse, Tetra-
hedron Lett., 1995, 36, 4257.
18, 357; (b) Y. Yamamoto, H. Yatagai, Y. Naruta and 12 M. Yasuda, K. Hirata, M. Nishino, A. Yamamoto and
K. Maruyama, J. Am. Chem. Soc., 1980, 102, 7107; A. Baba, J. Am. Chem. Soc., 2002, 124, 13442.
(c) Q. Tang, K. Fu, P. Ruan, S. Dong, Z. Su, X. Liu and 13 J.-X. Wang, J. Xuefeng, T. Meng and L. Xina, Synthesis, 2005,
X. Feng, Angew. Chem., Int. Ed., 2019, 58, 11846–11851; 2838–2844.
(d) C. Y. Shi, Z. Z. Pan, P. Tian and L. Yin, Nat. Commun., 14 Y. J. Bian, C. R. Fan and X. H. Hoo, Indian J. Chem., 2006, 45,
2020, 11, 1–10 and references cited therein. 1587–1590.
3 Recent reviews: (a) J. A. Marshall, Chem. Rev., 2000, 100, 15 H. Ren, G. Dunet, P. Mayer and P. Knochel, J. Am. Chem.
3163–3185; (b) S. E. Denmark and J. Fu, Chem. Rev., 2003,
103, 2763–2793.
4 (a) A. K. Sinha, B. Mondal, M. Kundu, B. Chakraborty and
Soc., 2007, 129, 5376–5377.
16 J. Pan, M. Zhang and S. Zhang, Org. Biomol. Chem., 2012, 10,
1060–1067.
U. K. Roy, Org. Chem. Front., 2014, 1, 1270; (b) Y. Yamamoto 17 R. Lasch and M. R. Heinrich, J. Org. Chem., 2015, 80,
and N. Asao, Chem. Rev., 1993, 93, 2207; (c) J. A. Marshall,
10412–10420.
Chem. Rev., 1996, 96, 31; (d) J. A. Marshall, Chem. Rev., 2000, 18 D. Marton, D. Stivanello and G. Tagliavini, J. Org. Chem.,
100, 3163; (e) U. K. Roy and S. Roy, Chem. Rev., 2010,
1996, 61, 2731–2737.
110, 2472; ( f ) R. Lasch and M. R. Heinrich, J. Org. Chem., 19 L. W. Bieber, M. F. da Silva, R. C. da Costa and L. O. S. Silva,
2015, 80, 10412; (g) B. Mondal, S. P. Mandal, M. Kundu, Tetrahedron Lett., 1998, 39, 3655–3658.
U. Adhikari and U. K. Roy, Tetrahedron, 2019, 75, 4669–4675; 20 J. X. Wang, X. Jia, T. Meng and L. Xina, Synthesis, 2005,
(h) L.-M. Zhao, K. Liu and D.-F. Li, J. Org. Chem., 2019, 84, 2838–2844.
15429–15436; (i) S. A. Karpe, M. Singh and L. R. Chowhan, 21 X. Ma, J.-X. Wang, S. Li, K.-H. Wang and D. Huang, Tetra-
Synth. Commun., 2017, 47, 1737–1746. hedron, 2009, 65, 8683–8689.
5 Zinc mediated Barbier allylation: (a) K. T. Tan, S. S. Chng, 22 D. R. Fandrick, C. S. Johnson, K. R. Fandrick, J. T. Reeves,
H. S. Cheng and T. P. Loh, J. Am. Chem. Soc., 2003,
125, 2958; (b) X.-W. Sun, M.-H. Xu and G.-Q. Lin, Org. Lett.,
Z. Tan, H. Lee, J. J. Song, N. K. Yee and C. H. Senanayake,
Org. Lett., 2010, 12, 4.
2006, 8, 4979; (c) X. Ma, J.-X. Wang, S. Li, K.-H. Wang and 23 Y. Zhang and M. Han, J. Chem. Res., 2011, 568–570.
D. Huang, Tetrahedron, 2009, 65, 8683; (d) A. Wolan, 24 D. R. Fandrick, J. T. Reeves, J. M. Bakonyi, P. R. Nyalapatla,
A. Joachimczak, M. Budny, A. Kozakiewicz, J. W. Lim,
K. H. Kim, B. R. Park and J. N. Kim, Tetrahedron Lett.,
2011, 52, 6545; (e) L.-M. Zhao, H.-S. Jin, L.-J. Wan and
L.-M. Zhang, J. Org. Chem., 2011, 76, 1831; ( f ) M. Zhang,
Y. Hu and S. Zhang, Chem. – Eur. J., 2009, 15, 10732–10735;
Z. Tan, O. Niemeier, D. Akalay, K. R. Fandrick, W. Wohlleben,
S. Ollenberger, J. J. Song, X. Sun, B. Qu, N. Haddad, S. Sanyal,
S. Shen, S. Ma, D. Byrne, A. Chitroda, V. Fuchs,
B. A. Narayanan, N. Grinberg, H. Lee, N. Yee, M. Brenner
and C. H. Senanayake, J. Org. Chem., 2013, 78, 3592–3615.
(g) H. Cui, Y. Li and S. Zhang, Org. Biomol. Chem., 2012, 25 R. Lasch and R. H. Markus, J. Org. Chem., 2015, 80,
10, 2862; (h) J. Pan, M. Zhang and S. Zhang, Org. Biomol.
10412–10420.
Chem., 2012, 10, 1060–1067; (i) X. Wang and S. Zhang, Chin. 26 Y. Yamasthita, Y. Cui, P. Xie and S. Kobayashi, Org. Lett.,
J. Chem., 2012, 30, 96–102; ( j) C. Reddy and S. A. Babu,
2015, 17, 6042–6045.
Synlett, 2015, 2121–2126; (k) J. Yin, R. T. Stark, I. A. Fallis 27 M. Banerjee and S. Roy, Org. Lett., 2004, 6, 2137.
and D. L. Browne, J. Org. Chem., 2020, 85, 2347–2354; 28 Rieke Zn-metal is also very reactive. Here the reactivity of
(l) J. Yin, R. T. Stark, I. A. Fallis and D. L. Browne, J. Org.
Chem., 2020, 85, 2347–2354.
nano-Zn is very much similar to Rieke zinc; please see:
R. D. Rieke, Science, 1989, 246, 1260–1264.
6 (a) S. Steurer and J. Podlech, Adv. Synth. Catal., 2001, 29 Y. Tamaru, S. Goto, A. Tanaka, M. Shimuzu and M. Kimura,
343, 251; (b) J. Auge, N. L. Germain and A. Thiaw-Woaye, Angew. Chem., Int. Ed. Engl., 1996, 35, 878–880.
Tetrahedron Lett., 1999, 40, 9245; (c) J. Nokami, J. Otera, 30 J. A. Marshall and C. M. Grant, J. Org. Chem., 1999, 64,
T. Sudo and R. Okawara, Organometallics, 1983, 2, 191; 696–697.
(d) K. Uneyama, N. Kamaki, A. Moriya and S. Torii, J. Org. 31 A. Kundu, S. Prabhakar, M. Vairamani and S. Roy, Organo-
Chem., 1985, 50, 5396. metallics, 1997, 16, 4796.
7 (a) C. J. Li, Chem. Rev., 1993, 93, 2023; (b) C. J. Li, Chem. Rev., 32 A. N. Thadani and R. A. Batey, Org. Lett., 2002, 3827.
2005, 105, 3095; (c) M. C. Pirrung, Chem. – Eur. J., 2006, 33 A. Di Scala, S. Garbacia, F. Helion, M.-I. Lannou and
12, 1312.
J.-L. Namy, Eur. J. Org. Chem., 2002, 2989.
8 T. A. Killinger, N. A. Boughton, T. A. Runge and J. Wolinsky, 34 A. Ito, M. Kishida, Y. Kurusu and Y. Masuyama, J. Org.
J. Organomet. Chem., 1977, 124, 131.
Chem., 2000, 65, 494.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021
7172
| New J. Chem., 2021, 45, 7163–7173