LETTER
Enantioselective Synthesis of a Hydroxyindolizidine Alkaloid
1895
a
b
c
H
H
H
O
O
O
MeO2C
MeO2C
N
N
MeO2C
NH
H
Cbz
Cbz
3
4
5
H
H
H
H
HO
H
d
H
e
N
HO
HO
5
2
MeO2C
N
N
Cbz
8
Cbz
Cbz
7
6
O
H
H
H
H
1.5%
f
HO
4.5%
3
9
+
H
N
5
N
H
3.6%
HO
H
N
H
H
H
1
9
6.4%
selected NOE data for 1
Scheme 1 Reagents and conditions: a) LiHMDS, CbzCl, THF, –78 to 0 °C (92%); b) n-BuMgBr, TMEDA, THF, –78 °C (65%); c) Ph3SiH,
BF3·OEt2, CH2Cl2, –78 °C to r.t. (98%); d) DIBAL, CH2Cl2, –78 °C then vinylMgBr (3 equiv), THF, –78 °C to r.t. (72%); e) 1-hexen-3-one,
Grubbs second-generation catalyst (0.1 equiv), CH2Cl2, reflux (97%); f) 20% Pd(OH)2, EtOH, 1 atm (1: 62%, 9: 19%).
Sinnwell, V.; Baumann, H.; Kaib, M.; Francke, W. Angew.
Chem., Int. Ed. Engl. 1997, 36, 77.
three ( )-diastereomers] synthesized earlier in a nonenan-
tioselective manner by Jones et al.5 The absolute configu-
ration of the natural product was shown identical to that of
(–)-1 by the correspondence of its tR after co-injection
with ( )-1 from Jones’ synthetic mixture and the crude ant
extract using a chiral permethylated b-cyclodextrin col-
umn.11 Thus the natural product has the same absolute
configuration as (–)-1, that is, 3S,5R,8S,9S. This is the
same configuration at C-3, C-5, and C-9 as the recently
synthesized natural (–)-monomorine from ants.12
(3) (a) Toyooka, N.; Kobayashi, S.; Zhou, D.; Tsuneki, H.;
Wada, T.; Sakai, H.; Nemoto, H.; Sasaoka, T.; Garraffo, H.
M.; Spande, T. F.; Daly, J. W. Bioorg. Med. Chem. Lett.
2007, 17, 5872. (b) Kobayashi, S.; Toyooka, N.; Zhou, D.;
Tsuneki, H.; Wada, T.; Sasaoka, T.; Sakai, H.; Nemoto, H.;
Garraffo, H. M.; Spande, T. F.; Daly, J. W. Beilstein J. Org.
Chem. 2007, 3, 30. (c) Tsuneki, H.; You, Y.; Toyooka, N.;
Kagawa, S.; Kobayashi, S.; Sasaoka, T.; Nemoto, H.;
Kimura, I.; Dani, J. A. Mol. Pharmacol. 2004, 66, 1061.
(4) (a) Michael, J. P. Beilstein J. Org. Chem. 2007, 3, 27.
(b) Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
(5) Jones, T. H.; Voegtle, H. L.; Miras, H. M.; Weatherford, R.
G.; Spande, T. F.; Garraffo, H. M.; Daly, J. W.; Davidson, D.
W.; Snelling, R. R. J. Nat. Prod. 2007, 70, 160.
(6) (a) Toyooka, N.; Tsuneki, H.; Kobayashi, S.; Zhou, D.;
Kawasaki, M.; Kimura, I.; Sasaoka, T.; Nemoto, H. Curr.
Chem. Biol. 2007, 1, 97. (b) Toyooka, N.; Tsuneki, H.;
Nemoto, H. Yuki Gosei Kagaku Kyokaishi 2006, 64, 49.
(c) Toyooka, N.; Nemoto, H. New Methods for the
Asymmetric Synthesis of Nitrogen Heterocycles; Vicario, J.
L., Ed.; Research Signpost: India, 2005, 149–163.
(d) Toyooka, N.; Nemoto, H. Recent Research
In summary, we achieved the first enantioselective syn-
thesis of the new ant alkaloid, 3-butyl-5-propyl-8-hy-
droxyindolizidine, starting from lactam 3 in seven steps,
and the absolute configuration as well as the proposed rel-
ative structure of the natural ant alkaloid was confirmed
by comparison with synthetic (–)-1. The relative configu-
ration reported5 for the hydroxyindolizidine as structure
10a was arbitrarily depicted but fortuitously shows the
correct absolute configuration as this work indicates.
Acknowledgment
Developments in Organic Chemistry, Vol. 6; Pandalai, S. G.,
Ed.; Transworld Research Network: Trivandrum India,
2002, 611–624.
This work was supported in part by a Grant-in-Aid for Scientific
Research from the Japan Society for the Promotion of Science and
Tamura Foundation for Promotion of Science and Technology.
(7) Brenneman, J. B.; Machauer, R.; Martin, S. F. Tetrahedron
2004, 60, 7301.
(8) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2039.
(9) Spectral Data of 1
References and Notes
IR (neat): 3482, 2956, 2872, 1513, 1457, 1378, 1234, 1130,
1054, 970, 826 cm–1. 1H NMR (500 MHz, CDCl3): d = 0.90
(3 H, t, J = 7.2 Hz), 0.91 (3 H, t, J = 7.2 Hz), 1.17–1.49 (11
H, br m), 1.53–1.62 (4 H, m), 1.68–1.86 (3 H, m), 2.25 (1 H,
t-like, J = 9.8 Hz), 2.40 (1 H, m), 2.75 (1 H, t-like, J = 8.5
(1) (a) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod.
2005, 68, 1556. (b) Daly, J. W.; Garraffo, H. M.; Spande, T.
F. In Alkaloids: Chemical and Biological Perspectives, Vol.
13; Pelletier, S. W., Ed.; Pergamon Press: New York, 1999,
1–161.
(2) (a) Francke, W.; Schroder, F.; Walter, F.; Sinnwell, V.;
Baumann, H.; Kaib, M. Liebigs Ann. 1995, 965.
Hz), 3.03 (1 H, d, J = 10.3 Hz), 3.74 (1 H, d, J = 9.8 Hz). 13
C
NMR (75 MHz, CDCl3): d = 14.27 (q), 14.50 (q), 19.16 (t),
22.98 (t), 25.92 (t), 26.67 (t), 28.75 (t), 28.98 (t), 32.18 (t),
37.83 (t), 39.43 (t), 60.43 (d), 64.07 (d), 65.45 (d), 70.06 (d).
MS: m/z (%) = 239 [M+], 196 (100). HRMS: m/z calcd for
(b) Schroder, F.; Sinnwell, V.; Baumann, H.; Kaib, M.
Chem. Commun. 1996, 2139. (c) Schroder, F.; Francke, S.;
Francke, W.; Baumann, H.; Kaib, M.; Pasteels, J. M.;
Daloze, D. Tetrahedron 1996, 52, 13539. (d) Schroder, F.;
Synlett 2008, No. 12, 1894–1896 © Thieme Stuttgart · New York