QSAR and CN Approach to MAO A and B Inhibitors
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 21 6749
C8), 21.43, 21.67, 23.89, 25.21, 26.70 (MeCO), 73.40 (CH2O),
107.18 (C6), 114.24 (C8), 114.79, 120.97, 121.08 (C5), 147.13,
151.22, 157.09, 162.05 (C2), 205.13 (MeCO). IR 2942, 1738, 1698,
1605, 1416, 1292, 1025, 803. MS m/z 287 ([M + 1]+, 38), 286
(M+, 100), 271 (12), 258 (5), 243 (60), 230 (21). Anal. (C17H18O4)
C, H.
MS m/z 347 ([M + 2]+, 2), 345 (M+, 12), 344 (13), 265 (60), 225
(100), 171 (17). Anal. (C17H13BrO3) C, H.
General Procedure for the Preparation of the Furocoumarin
derivatives 29, 32, 33. To a solution of the corresponding ketoether
11, 14, or 15 (3.39 mmol) in ethyl alcohol (200 mL) was added
0.1 M NaOH (200 mL). The mixture was heated under reflux for
12 h, acidified with HCl, and concentrated to half-volume and left
overnight. The resulting precipitate was filtered off and purified
by FC to give the desired compound.
5-Methoxy-4′-methylfuro[3,2-g]coumarin (29). Yield 70%; mp
140 °C, 1H NMR (CDCl3) 2.40 (d, J ) 1.3, 3H, Me-C4′), 3.99 (s,
3H, MeO), 6.34 (d, J ) 9.8, 1H, H-3), 7.21 (s, 1H, H-8), 7.37 (d,
J ) 1.3, 1H, H-5′), 8.06 (d, J ) 9.8, 1H, H-4), 13C NMR (CDCl3)
9.26 (Me-C4′), 64.94 (MeO), 96.58 (C8), 109.20, 113.63 (C3),
114.68, 119.13, 138.57 (C4), 142.52 (C5′), 150.99, 152.35, 158.36,
161.04 (C2), IR 3110, 2945, 1732, 1717, 1634, 1607, 1113, 820,
MS m/z 231 ([M + 1]+, 14), 230 (M+, 100), 215 (78), 187 (49),
159 (25), 131 (8). Anal. (C13H10O4) C, H.
7-(ꢀ-Bromoallyloxy)-3,4-cyclopentene-8-methylcoumarin (24).
Yield 78%; mp 140 °C. 1H NMR (CDCl3) 2.19 (m, 2H,
CH2CH2CH2), 2.38 (s, 3H, Me-C8), 2.90 (t, J ) 7.5, 2H, CH2-C4),
3.03 (t, J ) 7.6, 2H, CH2-C3), 4.72 (s, 2H, CH2O), 5.71 (d, J )
2.1, 1H, C)CH), 6.01 (d, J ) 2.1, 1H, C)CH), 6.77 (d, J ) 8.6,
1H, H-6), 7.23 (d, J ) 8.6, 1H, H-5). 13C NMR (CDCl3) 8.61 (Me-
C8), 22.56 (CH2CH2CH2), 30.40 (CH2-C4), 32.07 (CH2-C3),
72.02 (CH2O), 108.09 (C6), 113.26 (C8), 114.81, 118.00 (CH2dC),
122.47 (C5), 124.94, 126.52, 153.40, 156.40, 157.63, 160.58 (C2).
IR 2919, 1716, 1611, 1373, 1282, 1109, 803. MS m/z (%): 336
([M + 2]+, 12), 335 (M+, 12), 255 (76), 215 (29), 187 (100), 128
(15). Anal. (C16H15BrO3) C, H.
4′,5′-Cyclopentene-4,8-dimethylfuro[3,2-g]coumarin (32). Yield
30%; mp 153 °C, 1H NMR (CDCl3) 2.48 (s, 3H, Me-C8), 2.57 (s,
3H, Me-C4), 2.59 (m, 2H, CH2CH2CH2), 2.78 (m, 2H, CH2-C5′),
2.90 (m, 2H, CH2-C4′), 6.24 (s, 1H, H-3), 7.41 (s, 1H, H-5). 13C
NMR (CDCl3) 8.9 (Me-C8), 19.7 (Me-C4), 23.1 (CH2CH2CH2),
25.6 (CH2-C4′), 27.6 (CH2-C5′), 110.6 (C8), 111.3 (C3), 113.2 (C5),
116.2, 121.7, 123.3, 148.9, 153.8, 161.4, 162.1, 164.9 (C2). IR 2922,
2850, 1706, 1558, 1480, 1396, 1125, 1092. MS m/z 254 (M+, 80),
226 (M+ - CO, 100), 225 (98), 199 (18), 183 (15), 149 (56). Anal.
(C16H14O3) C, H.
4′,5′-Cyclohexene-4,8-dimethylfuro[3,2-g]coumarin (33). Yield
56%; mp 189-190 °C. 1H NMR (CDCl3) 1.85-2.00 (m, 4H,
CH2(CH2)2CH2), 2.50 (d, J ) 1.1, 3H, Me-C4), 2.58 (s, 3H, Me-
C8), 2.65 (m, 2H, CH2-C5′), 2.78 (CH2-C4′), 6.24 (d, J ) 1.1, 1H,
H-3), 7.41 (s, 1H, H-5). 13C NMR (CDCl3) 8.9 (Me-C8), 19.7 (Me-
C4), 20.8 (CH2-C5′), 22.8, 23.1, 23.9 (CH2-C4′), 109.0 (C8), 110.7
(C3), 113.0 (C5), 113.3, 116.2, 126.3, 150.1, 152.0, 153.7, 156.3,
162.0 (C2). IR 3070, 2923, 1716, 1639, 1403, 1183, 1100, 873.
MS m/z 269 ([M + 1]+, 11), 268 (M+, 100), 240 (29), 212 (19),
167 (13), 127 (10). Anal. (C17H16O3) C, H.
Biological Assay. Enzymatic MAO-A and MAO-B activity of
compounds was determined by a fluorimetric method following a
previously described protocol.41 Briefly, 0.1 mL of sodium
phosphate buffer (0.05 M, pH 7.4) containing various concentrations
of the test drugs (new compounds or reference inhibitors) and
appropriate amounts of recombinant hMAO-A or hMAO-B (Sigma-
Aldrich Quimica S.A., Alcobendas, Spain) and adjusted to obtain
in our experimental conditions the same reaction velocity in the
presence of both isoforms (i.e., to oxidize (in the control group)
the same concentration of substrate: 165 pmol of p-tyramine/min
(hMAO-A: 1.1 µg protein; specific activity: 150 nmol of p-tyramine
oxidized to p-hydroxyphenylacetaldehyde/min/mg protein; hMAO-
B: 7.5 µg protein; specific activity: 22 nmol of p-tyramine
transformed/min/mg protein) were incubated for 15 min at 37 °C
in a flat-black-bottom 96-well microtest plate (BD Biosciences,
Franklin Lakes, NJ) placed in the dark fluorimeter chamber. After
this incubation period, the reaction was started by adding (final
concentrations) 200 µM of 10-acetyl-3,7-dihydroxyphenoxazine
reagent (Amplex Red assay kit, Molecular Probes, Inc., Eugene,
OR), 1 U/mL horseradish peroxidase, and 1 mM p-tyramine. The
production of H2O2 and, consequently, of resorufin, was quantified
at 37 °C in a multidetection microplate fluorescence reader
(FLX800, Bio-Tek Instruments, Inc., Winooski, VT) based on the
fluorescence generated (excitation, 545 nm, emission, 590 nm) over
a 15 min period, during which the fluorescence increased linearly.
7-(ꢀ-Bromoallyloxy)-3,4-cyclohexene-8-methylcoumarin (25).
Yield 76%; mp 135-136 °C. 1H NMR (CDCl3) 1.82 (m, 4H,
CH2(CH2)2CH2), 2.35 (s, 3H, Me-C8), 2.56 (m, 2H, CH2-C4), 2.72
(m, 2H, CH2-C3), 4.71 (s, 2H, CH2O), 5.76 (d, J ) 1.6, 1H,
CdCH), 6.01 (d, J ) 1.6, 1H, CdCH), 6.75 (d, J ) 8.8, 1H, H-6),
7.35 (d, J ) 8.8, 1H, H-5). 13C NMR (CDCl3) 8.78 (Me-C8), 21.86
(CH2-CH2C3), 22.11 (CH2-CH2C4), 24.31 (CH2-C3), 25.65
(CH2-C4), 72.36 (CH2O), 108.32 (C6), 114.80 (C8), 115.04,
118.36 (CH2dC), 121.26, 121.35 (C5), 127.03, 147.64, 151.57,
157.47, 162.60 (C2). IR 3071, 2935, 1708, 1605, 1114, 755. MS
m/z 350 ([M + 2]+, 4), 349 (M+, 22), 269 (89), 229 (100), 201
(58), 187 (40). Anal. (C17H17BrO3) C, H.
General Procedure for the Preparation of 3,4-Benzocoumarins
26-28. To a solution of the acyclic ether 22, 23,45 or 25 (0.30
mmol) in toluene (15 mL) was added DDQ (0.60 mmol). The
solution was heated under reflux for 5 h. The mixture was cooled,
the precipitate filtered off, and the solvent evaporated under reduced
pressure. The resulting residue was purified by FC to give the
desired compound.
3,4-Benzo-7-acetonyloxy-8-methylcoumarin (26). Yield 64%; mp
172-174 °C. 1H NMR (CDCl3) 2.35 (s, 6H, Me-C8, MeCO), 4.60
(s, 2H, CH2O), 6.63 (d, J ) 8.8, 1H, H-6), 7.46 (m, 1H, CH-CHC3),
7.73 (m, 2H, H-5, CH-CHC4), 7.91 (d, J ) 8.0, 1H, CH C4), 8.28
(d, J ) 7.9, 1H, CH-C3). 13C NMR (CDCl3) 8.45 (Me-C8), 26.67
(MeCO), 73.19 (CH2O), 107.43 (C6), 111.95, 114.95, 119.72,
120.44 (CH-C4), 121.12 (CH-CHC3), 127.72 (C5), 130.19 (CH-
C3), 134.60 (CH-CHC4), 134.94, 150.15, 156.95, 161.13 (C2),
204.98 (MeCO). IR 2925, 1716, 1607, 1468, 1284, 1125, 766. MS
m/z 283 ([M + 1]+, 18), 282 (M+, 100), 239 (60), 225 (43), 181
(51), 152 (47). Anal. (C17H14O4) C, H.
3,4-Benzo-7-acetonyloxy-8-methoxycoumarin (27). Yield 56%;
1
mp 172-174 °C. H NMR (CDCl3) 2.33 (s, 3H, MeCO), 4.05 (s,
3H, MeO), 4.72 (s, 2H, CH2O), 6.80 (d, J ) 9.0, 1H, H-6), 7.53 (t,
J ) 8.1, 1H, CH-CHC3), 7.70 (d, J ) 9.0, 1H, H-5), 7.78 (t, J )
7.7, 1H, CH-CHC4), 7.99 (d, J ) 8.0, 1H, CH-C4), 8.36 (d, J )
7.9, 1H, CH-C3). 13C NMR (CDCl3) 27.01 (MeCO), 62.15 (MeO),
74.62 (CH2O), 110.94 (C6), 114.12, 118.00 (CH-C4), 120.50,
121.88 (C5), 128.76 (CH-CHC3), 131.04 (CH-C3), 135.29, 135.36
(CH-CHC4), 137.94, 146.26, 152.78, 161.07 (C2), 205.12 (MeCO).
IR 2935, 1730, 1608, 1475, 1304, 1121, 812. MS m/z 299 ([M +
1]+, 18), 298 (M+, 100), 255 (27), 241 (67), 197 (25), 170 (19).
Anal. (C17H14O5) C, H.
3,4-Benzo-7-(b-bromoallyloxy)-8-methylcoumarin (28). Yield
82%; mp 128 °C. 1H NMR (CDCl3) 2.38 (s, 3H, Me-C8), 4.72 (s,
2H, CH2O), 5.72 (d, J ) 1.9, 1H, CdCH), 6.03 (d, J ) 1.9, 1H,
CdCH), 6.80 (d, J ) 8.8, 1H, H-6), 7.49 (m, 1H, CH-CHC4), 7.78
(m, 1H + 1H, CH-CHC3 + H-5), 7.98 (d, J ) 8.0, 1H, CH-C3),
8.34 (d, J ) 8.0, 1H, CH-C4). 13C NMR (CDCl3) 8.95 (Me-C8),
72.33 (CH2O), 108.68 (C6), 112.36, 115.67, 118.39 (CdCH2),
120.25, 120.84 (CH-C4), 121.63 (CH-CHC3), 127.01, 128.18 (C5),
130.75 (CH-CHC4), 135.12 (CH-C3), 135.57, 150.66, 157.49,
161.78 (C2). IR 2921, 1726, 1608, 1470, 1283, 1115, 891, 766.
Control experiments were carried out simultaneously by replacing
the test drugs (new compounds and reference inhibitors) with
appropriate dilutions of the vehicles. In addition, the possible
capacity of the above test drugs to modify the fluorescence
generated in the reaction mixture due to nonenzymatic inhibition
was determined by adding these drugs to solutions containing only
the Amplex Red reagent in a sodium phosphate buffer.