Communication
ChemComm
well-studied under heat, irradiation, and Cu+ mediated reduction
conditions.28,30 A homolysis of the weak S–N bond could yield
equal moles of NO and a thiyl radical. Thiyl radical intermediates
are typically reactive, subsequently resulting in a rapid dimeriza-
tion to yield the corresponding disulfide.28,30 Finally, a possible
NO generation pathway for NO donors 3 is summarized in Fig. 3b,
based on our NO measurement and disulfide characterization.
To summarize, a novel family of fluorinated S-nitrosothiols
has been reported herein. The presence of fluorine or fluoro-
alkyl groups on the benzylamide does not influence the
stability of the S–N bond. Kinetic studies of their photolytic
and thermal decomposition reactions were conducted. The
stoichiometric release of NO and the corresponding disulfide
formation from decomposition was monitored by NO chemi-
luminescence measurements and 1H NMR spectroscopy,
respectively. Detailed theoretical calculations on the relation-
ship between structure and stability of these new fluorinated
NO donors are currently underway. We anticipate that these
new species will have applications as useful NO release agents,
potentially for incorporation into fluorinated biopolymers for
preventing infection and/or thrombosis on surfaces of various
medical devices. Such studies are now ongoing in our laboratory.
The authors acknowledge the Juvenile Diabetes Research
Foundation (JDRF: 2-SRA-2016-230-Q-R) and the National
Institutes of Health (HL-128337) for supporting this research.
We also are grateful to Dr. Paul Sampson at Kent State Uni-
versity for helpful discussion on fluorine chemistry.
3 C. Farah, L. Y. M. Michel and J.-L. Balligand, Nat. Rev. Cardiol., 2018,
15, 292.
4 M. J. Simmonds, J. A. Detterich and P. Connes, Biorheology, 2014, 51,
121–134.
5 T. Constantine and E. F. Jane, Curr. Drug Targets, 2006, 7, 1243–1251.
6 C. Bogdan, Trends Immunol., 2015, 36, 161–178.
7 L. Yang, E. S. Feura, M. J. R. Ahonen and M. H. Schoenfisch,
Adv. Healthcare Mater., 2018, 7, 1800155.
8 V. Huzefa, K. Munawwar Ali, A. Usama and H. Arif, J. Cancer Prev.,
2016, 21, 1–12.
9 A. Krausz and A. J. Friedman, Future Sci. OA, 2015, 1, FSO56.
10 X. Liu, M. J. S. Miller, M. S. Joshi, H. Sadowska-Krowicka, D. A. Clark
and J. R. Lancaster, J. Biol. Chem., 1998, 273, 18709–18713.
11 P. G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai and A. J. Janczuk,
Chem. Rev., 2002, 102, 1091–1134.
12 A. D. Ostrowski and P. C. Ford, Dalton Trans., 2009, 10660–10669.
13 Z. Huang, J. Fu and Y. Zhang, J. Med. Chem., 2017, 60, 7617–7635.
14 T. Munzel and A. Daiber, Vasc. Pharmacol., 2018, 102, 1–10.
15 R. Berger, G. Resnati, P. Metrangolo, E. Weber and J. Hulliger, Chem.
Soc. Rev., 2011, 40, 3496–3508.
˜
16 Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Acena, V. A. Soloshonok,
K. Izawa and H. Liu, Chem. Rev., 2016, 116, 422–518.
17 V. Cardoso, D. Correia, C. Ribeiro, M. Fernandes and S. Lanceros-
´
Mendez, Polymers, 2018, 10, 161.
18 T. Hayama, H. Yoshida, M. Yamaguchi and H. Nohta, J. Pharm.
Biomed. Anal., 2014, 101, 151–160.
19 H. M. Rapp, S. Bacher, A. Ahrens, W. Rapp, B. Kammerer, G. U.
Nienhaus and W. Bannwarth, ChemPlusChem, 2012, 77, 1066–1070.
20 D. Chopra and T. N. G. Row, CrystEngComm, 2011, 13, 2175–2186.
21 H. Omorodion, B. Twamley, J. A. Platts and R. J. Baker, Cryst. Growth
Des., 2015, 15, 2835–2841.
22 Y. Wo, E. J. Brisbois, R. H. Bartlett and M. E. Meyerhoff, Biomater.
Sci., 2016, 4, 1161–1183.
23 Y. Zhou, Q. Zhang, J. Wu, C. Xi and M. E. Meyerhoff, J. Mater. Chem.
B, 2018, 6, 6142–6152.
`
˜
24 L. Soulere, J.-C. Sturm, L. J. Nu´nez-Vergara, P. Hoffmann and
´ ´
J. Perie, Tetrahedron, 2001, 57, 7173–7180.
25 M. C. Frost and M. E. Meyerhoff, J. Am. Chem. Soc., 2004, 126,
1348–1349.
26 N. A. Stasko, T. H. Fischer and M. H. Schoenfisch, Biomacromolecules,
2008, 9, 834–841.
Conflicts of interest
There are no financial conflicts to declare.
27 B. M. Grommersch, J. Pant, S. P. Hopkins, M. J. Goudie and H. Handa,
ACS Appl. Mater. Interfaces, 2018, 10, 2291–2301.
28 D. L. H. Williams, Chem. Commun., 1996, 1085–1091.
29 D. L. H. Williams, Acc. Chem. Res., 1999, 32, 869–876.
30 C. Zhang, T. D. Biggs, N. O. Devarie-Baez, S. Shuang, C. Dong and
M. Xian, Chem. Commun., 2017, 53, 11266–11277.
Notes and references
1 T. A. Heinrich, R. S. da Silva, K. M. Miranda, C. H. Switzer, D. A.
Wink and J. M. Fukuto, Br. J. Pharmacol., 2013, 169, 1417–1429.
2 D. D. Thomas, Redox Biol., 2015, 5, 225–233.
404 | Chem. Commun., 2019, 55, 401--404
This journal is ©The Royal Society of Chemistry 2019