6018
K. Takabe et al. / Tetrahedron Letters 49 (2008) 6016–6018
S. J. Am. Chem. Soc. 1984, 106, 5208–5217; (c) Tani, K.; Yamagata, T.; Otsuka, S.;
Table 1
Kumobayashi, H.; Akutagawa, S. Org. Synth. 1989, 67, 33–43.
6. (a) Akutagawa, S. Organic Synthesis in Japan: Past, Present, and future: in
Commemoration of the 50th Anniversary of the Society of Synthetic Organic
Chemistry, Japan; Noyori, R. (Ed.), Tokyo Kagaku Dojin, 1992; pp 75–82; (b)
Otsuka, S. Acta Chem. Scand. 1996, 50, 353–360.
7. Kumobayashi, H.; Mitsuhashi, S.; Akutagawa, S.; Ohtsuka, S. Chem. Lett. 1986,
157–160.
8. (a) Takabe, K.; Yamada, T.; Sato, T.; Katagiri, T. Nippon Kagaku Kaishi 1980, 776–
778; (b) Takabe, K.; Yamada, T.; Katagiri, T. Chem. Ind. (London, U.K.) 1980, 13,
540. see also Ref. 9b.
Lipase-catalyzed kinetic resolution of the racemic alcohol 25
AcO
c
25
(R)- (63%)
HO
O
26
(R)-
a
b
+
lipase
9. (a) Takabe, K. Koryo 1983, 139, 41–45; (b) Yamada, T.; Takabe, K. Chem. Lett.
1993, 29–30. See also references cited therein.
HO
10. Albini, A. Synthesis 1993, 263–277. See also references cited therein.
11. Takabe, K.; Katagiri, T.; Tanaka, J.; Fujita, T.; Watanabe, S.; Suga, K. Org. Synth.
1989, 67, 44–47.
7
25 (99%)
d
(S)-26 (51%)
12. Takabe, K.; Yamada, T.; Katagiri, T.; Tanaka, J. Org. Synth. 1989, 67, 48–51.
13. Typical procedure: To
a solution of N,N-diethylgeranylamine ((E)-1, 2.1 g,
25
(S)-
10 mmol, 1.0 equiv)) in methanol (10 mL) was added 31% H2O2 aq (3.3 mL) at
room temperature. The mixture was stirred for 48 h, and then PtO2 (3 mg) was
added to decompose excess oxidizing agent. The reaction mixture was filtrated
through the Celite and washed with MeOH. The filtrate was evaporated under
reduced pressure to give the crude N-oxide 4. To a colorless solution of the
crude N-oxide 4 in H2O was added 50% H2SO4 aq (V/V, 9.8 mL). The mixture
changed from colorless to pink during stirring for 24 h at 100 °C. After cooling to
0 °C, NaOH pellets (10 g) and crushed ice (10 g) were added to the reaction
vessel. Stirred for 24 h at 100 °C, the mixture was gradually separated into pale
yellow aqueous layer and dark brown organic layer. The mixture was quenched
with 10% HCl aq (10 mL). The aqueous layer was extracted with Et2O (3 Â 5 mL).
The organic extracts were concentrated to give the crude enone 7, which was
purified by flash column chromatography (silica gel 60 g, hexanes
only ? hexanes/ethylacetate = 80:20) to give 1-(4,4-dimethylcyclohex-1-
enyl)ethanone (7, 0.96 g, 63%) as a pale yellow liquid: registry number 5773-
37-5; Rf = 0.61 (hexane/AcOEt = 70:30); 1H NMR (300 MHz, CDCl3) d = 6.84
(ddd, J = 5.4, 3.7, 1.4 Hz, 1 H, –CH@C–), 2.29 (s, 3H, CH3CO–), 2.21–2.32 (m, 2 H,
–CH2–), 2.04 (td, J = 4.2, 2.3 Hz, 2H, –CH2–), 1.40 (t, J = 6.5 Hz, 2 H, –CH2–), 0.92
(s, 6H, 2 Â –CH3); 13C NMR (75 MHz, CDCl3) d = 199.24 (C@O), 140.04 (CH),
138.46 (C), 39.89 (CH2), 34.68 (CH2), 28.21 (C), 27.93 (CH3), 25.08 (CH3), 20.64
(CH2).
Entry
Lipase
M-10
Newlase F
A-6
PEG
MY
Conversion (%)
(R)-26 ee (%)
E value
1
2
3
4
5
6
7
8
9
0
0
4.4
4.5
—
—
—
—
>99
>99
>99
>99
>99
>99
>99
>99
>99
>99
208
208
221
232
308
344
373
374
738
992
9.7
OF
13.8
30.9
35.4
38.2
38.3
48.9
>49.9
CHIRAZYMEÒ L-2
PSA-30
PS-D
10
11
12
NOVOZYMEÒ
PL
AK
Reagents and conditions: (a) NaBH4, CeCl3Á7H2O, MeOH, 0 °C, 2 h; (b) vinyl acetate
(0.5 equiv), lipase (100 mg/mmol), i-Pr2O, 25 °C; (c) K2CO3, MeOH, 25 °C, 6 h; (d)
Ac2O, Et3N, DMAP, Et2O, rt, 2.5 h.
14. The cyclic enone 7 was prepared from commercially available enone 27 in four
step transformations: Fleming, I.; Pearce, A. J. Chem. Soc., Perkin Trans. 1 1980,
2485–2489.
by standard hydrolysis ((R)-26 ? (R)-25) or acetylation ((S)-
25 ? (S)-26). Interestingly, odor of (S)-isomers 25 and 26 is stron-
ger and more sensory active than those of (R)-isomers, particularly,
(S)-alcohol 25 shows good herbal odor (see Table 1).20
O
O
O
Cl
TMS
H2
PCl5
Na
TMSCl
AlCl3
AcCl
In summary, we have developed acid promoted cyclization of
geranylamine N-oxide (E)-4 followed by base-catalyzed intramo-
lecular aldol condensation afforded the cyclic enone 7 in one-pot
operation. Reduction of 7, which possess strong fruity odor, fol-
lowed by lipase-catalyzed kinetic resolution furnished the acetate
(R)-26 (>49.9% yield, >99% ee) and the recovered herbal alcohol (S)-
25 (>49.9% yield, >99% ee). Further studies focusing on the use of
acid promoted cyclization of N-oxide derivatives are currently
under investigation and will be reported in due course.
28
29
30
(40%)
27
(67%)
(40%)
7
(79%)
.
15. Acid promoted cyclization of farnesyl derivatives generally gave trans-decalyl
derivatives. See: (a) Ohloff, G.; Näf, F.; Decorzant, R.; Thommen, W.; Sundt, E.
Helv. Chim. Acta 1973, 56, 1414–1448; (b) Corbier, B.; Ehret, C.; Giraudi, E.;
Pelerin, G. Dev. Food Sci. 1988, 18, 483–494.
16. Valla, A.; Andriamialisoa, Z.; Valla, B.; Labia, R.; Le Guillou, R.; Dufosse, L.;
Cartier, D. Eur. J. Org. Chem. 2007, 711–715.
17. (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519; (b) Ohtani, I.;
Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096.
18. The enantiomeric ratio E is generally accepted as an adequate parameter to
quantify the enantioselectivity in biochemical kinetic resolutions: Chen, C. S.;
Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294–
7299.
19. Enantioselectivities of the acetate 26 were determined by chiral capillary GC
using InertCap CHIRAMIX. (130–180 °C, 2 °C/min, Rt: 20.953 min for (S)-26,
22.008 min for (R)-26.
Acknowledgments
We gratefully acknowledge Takasago International Corporation
for odor evaluations. We would like to thank Amano Enzyme Co.,
Ltd, Meito Sangyo Co., Novo Nordisk, and Roche Molecular
Biochemicals for a generous gift of enzymes.
20. We further synthesized ester derivatives 31 using DCC coupling agent. All of
ester derivatives possessed sweet odor; however, odor of 31 was weaker than
that of 26.
References and notes
HO
R
O
1. (a) Takabe, K.; Katagiri, T.; Tanaka, J. Bull. Chem. Soc. Jpn. 1973, 46, 222–225; (b)
Fujita, T.; Suga, K.; Watanabe, S. Chem. Ind. (London, U.K.) 1973, 231–232; (c)
Takabe, K.; Katagiri, T.; Tanaka, J. Tetrahedron Lett. 1972, 13, 4009–4012.
2. Takabe, K.; Katagiri, T.; Tanaka, J. Tetrahedron Lett. 1975, 3005–3006.
3. Takabe, K.; Katagiri, T.; Tanaka, J. Chem. Lett. 1977, 1025–1026.
DCC
DMAP
O
+
RCO2H
CH2Cl2
0 o
C
4. Takabe, K.; Yamada, T.; Katagiri, T. Chem. Lett. 1982, 1987–1988.
25
R = Et (85%), Pr (81%),
31
5. (a) Tani, K.; Yamagata, T.; Otsuka, S.; Akutagawa, S.; Kumobayashi, H.;
Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R. J. Chem. Soc., Chem.
Commun. 1982, 600–601; (b) Tani, K.; Yamagata, T.; Akutagawa, S.;
Kumobayashi, H.; Taketomi, T.; Takaya, H.; Miyashita, A.; Noyori, R.; Otsuka,
i-Pr (94%), (R)-sec-Bu (98%)