C O M M U N I C A T I O N S
Scheme 6. Total Synthesis of ent-Lepadin Ba
of other biologically interesting hydroquinolines. These results will
be reported in due course.
Acknowledgment. This work was supported by NSERC, the
Canada Research Chairs Program, the Canadian Foundation for
Innovation, and the Universite´ de Montre´al. G.B. thanks NSERC
and Boehringer Ingelheim for postgraduate fellowships.
Supporting Information Available: Experimental details and
spectroscopic data. This material is available free of charge via the
References
(1) For isolation, see: Lepadin A: (a) Steffan, B. Tetrahedron 1991, 47, 8729.
Lepadin A and B: (b) Kubanek, J.; Williams, D. E.; de Solva, E. D.; Allen,
T.; Andersen, R. J. Tetrahedron Lett. 1995, 36, 6189–6192. Lepadin D-
F: (c) Wright, A. D.; Goclik, E.; Konig, G. M.; Kaminsky, R. J. Med.
Chem. 2002, 45, 3067. Lepadin F-H: (d) Davis, R. A.; Carroll, A. R.;
Quinn, R. J. J. Nat. Prod. 2002, 65, 454.
(2) Tsuneki, H.; You, Y.; Toyooka, N.; Sasaoka, T.; Nemoto, H.; Dani, J. A.;
Kimura, I. Biol. Pharm. Bull. 2005, 28, 611–614.
a Reagents and conditions: (a) (i) Hg(TFA)2, NaTFA, THF/H2O (4:1), rt,
2 h; (ii) NaBH4, NaOH 4.5 M; (b) Jones’ reagent, acetone, rt, 1 h, 74% (2
steps); (c) H2 (1 atm), Pd/C, MeOH, rt, 24 h; (d) TFAA, UHP, DCM, rt, 2 h,
69%; (e) IBX, toluene/DMSO (2:1), 80 °C, 15 h, 75%; (f) H2O2, KOH, THF/
H2O, rt, 2.5 min; (g) H2N-NH2, AcOH, MeOH, rt 2 h, 51% (2 steps); (h)
TPAP, NMO, DCM, rt, 2 h, 75%; (i) 10, Cp2Zr(H)Cl, CuI-DMS, THF, 40
°C, 2 h, 76%; (j) TsNHNH2; NaBH3CN, ZnCl2, MeOH, reflux, 2 h, 70%; (k)
Me3OBF4, Na2HPO4, MeCN; NaHCO3 aq.; K2CO3, MeOH, rt, 61%.
(3) (a) Toyooka, N.; Okumura, M.; Takahata, H.; Nemoto, H. Tetrahedron Lett.
1999, 55, 10673–10684. (b) Toyooka, N.; Okumura, M.; Takahata, H. J. Org.
Chem. 1999, 64, 2182–2183. (c) Ozawa, T.; Aoyagi, S.; Kibayashi, C. Org.
Lett. 2000, 2, 2955–2958. (d) Ozawa, T.; Aoyagi, S.; Kibayashi, C. J. Org.
Chem. 2001, 66, 3338–3347. (e) Pu, X.; Ma, D. Angew. Chem., Int. Ed.
2004, 43, 4222. (f) Pu, X.; Ma, D. J. Org. Chem. 2006, 71, 6562–6572. For
a formal total synthesis of racemic lepadin B, see: (g) Kala¨ı, C.; Tate, E.;
Zard, S. C. Chem. Commun. 2002, 1430–1431.
(4) For reviews on alkene metathesis, see: (a) Grubbs, R. H. Tetrahedron 2004,
60, 7117. (b) Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104, 2199. (c)
For applications in total synthesis, see: Nicolaou, K. C.; Bulger, P. G.;
Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490.
(5) Trost, B. M. Science 1991, 254, 1471.
hydroxyl group did not impair the formation of a ruthenium carbene
(6) For seminal application in total synthesis, see: (a) Stille, J. R.; Grubbs, R. H.
J. Am. Chem. Soc. 1986, 108, 855. For all-carbon systems, see: (b) Hart,
A. C.; Phillips, A. J. J. Am. Chem. Soc. 2006, 128, 1094. (c) Holtsclaw, J.;
Koreeda, M. Org. Lett. 2004, 6, 3719. (d) Wrobleski, A.; Sahasrabudhe, K.;
Aube´, J. J. Am. Chem. Soc. 2004, 126, 5475. (e) Hagiwara, H.; Katsumi, T.;
Endou, S.; Hoshi, T.; Suzuki, T. Tetrahedron 2002, 58, 6651. (f) Funel, J.;
Prunet, J. Synlett 2005, 235. (g) Stragies, R.; Blechert, S. Synlett 1998, 159.
For oxygen-containing systems, see: (h) Weatherhead, G. S.; Ford, J. G.;
Alexanian, E. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2000,
122, 1828. (i) Arjona, O.; Csaky, A. G.; Murcia, M. C.; Plumet, J. Tetrahedron
Lett. 2000, 41, 9777. (j) Zuercher, W. J.; Hashimoto, M.; Grubbs, R. H. J. Am.
Chem. Soc. 1996, 118, 6634. For nitrogen-containing systems, see: (k)
Maechling, S.; Norman, S. E.; McKendrick, J. E.; Basra, S.; Koppner, K.;
Blechert, S. Tetrahedron Lett. 2006, 47, 189. (l) Liu, Z.; Rainier, J. D. Org.
Lett. 2006, 8, 459–462. (m) Arjona, O.; Csaky, A. G.; Medel, R.; Plumet, J.
J. Org. Chem. 2002, 67, 1380. (n) Buchert, M.; Meinke, S.; Prenzel,
A. H. G. P.; Deppermann, N.; Maison, W. Org. Lett. 2006, 8, 5553.
(7) (a) Pfeiffer, M. W. B.; Phillips, A. J. J. Am. Chem. Soc. 2005, 127, 5334–
5335. (b) Minger, T. L.; Phillips, A. J. Tetrahedron Lett. 2002, 43, 5357–
5359.
(8) (a) Charette, A. B.; Grenon, M.; Lemire, A.; Pourashraf, M.; Martel, J. J. Am.
Chem. Soc. 2001, 123, 11829. (b) Lemire, A.; Grenon, M.; Pourashraf, M.;
Charette, A. B. Org. Lett. 2004, 6, 3517. (c) Lemire, A.; Charette, A. B.
Org. Lett. 2005, 7, 2747. (d) Lemire, A.; Beaudoin, D.; Grenon, M.; Charette,
A. B. J. Org. Chem. 2005, 70, 2368. (e) Charette, A. B.; Mathieu, S.; Martel,
J. Org. Lett. 2005, 7, 5401. (f) Sales, M.; Charette, A. B. Org. Lett. 2005, 7,
5773. (g) Focken, T.; Charette, A. B. Org. Lett. 2006, 8, 2985. (h) Larivee,
A.; Charette, A. B. Org. Lett. 2006, 8, 3955.
(9) See Supporting Information for more details.
(10) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 6, 953–
956.
(11) (a) Mori, M.; Sakakibara, N.; Kinoshita, A. J. Org. Chem. 1998, 63, 6082.
(b) Kinoshita, A.; Sakakibara, N.; Mori, M. J. Am. Chem. Soc. 1997, 119,
12388.
(12) Moisan, L.; Thue´ry, P.; Nicolas, M.; Doris, E.; Rousseau, B. Angew. Chem.,
Int. Ed. 2006, 45, 5334.
(13) Further mechanistic studies are in progress and will be reported elsewhere.
(14) It is interesting to note that diastereoisomer 6-S reacts faster than its 6-R
isomer. See ref 13.
(15) Cooper, M. S.; Heaney, H.; Newbold, A. J.; Sanderson, W. R. Synlett 1990,
533–535.
(16) (a) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000,
122, 7596–7597. (b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong,
Y.-L. J. Am. Chem. Soc. 2002, 124, 2245–2258.
as cyclopentene 22 was obtained in 86% yield.
When compound 23 was treated under the same reaction con-
ditions, cyclopentene 25 was isolated as the main product (87%
yield), accompanied by 11% of the corresponding rearranged
product 24. The latter results are suggestive of a common ruthenium
carbene involved in both mechanistic sequences leading to com-
pounds 24 and 25. Taken altogether, the absence of reactivity of
compounds 13 and 14 and the large influence of the proximal
hydroxyl group on the terminal alkene reactivity (Scheme 4), as
well as the kinetically competitive cyclopentene formation over the
expected rearrangement (Scheme 5), all support mechanism B as
the main pathway for the formation of 5.13,14
To complete the synthesis of ent-lepadin B, we turned our
attention to the introduction of the oxygen at the C-3 position and
sought a stereospecific Baeyer-Villiger oxidation as the obvious
choice (Scheme 6). After extensive survey of reaction conditions,
the required methylketone was obtained via a chemoselective
oximercuration/reduction of the terminal alkene followed by the
oxidation of the resulting alcohol using a Jones reagent. Hydrogena-
tion of the remaining alkene concomitantly with hydrogenolysis
of the benzyl ether provided ketone 26. Cooper’s conditions then
produced the C-3 oxygenated, conveniently bis-protected compound
27.15 The free secondary alcohol was then oxidized to the
corresponding enone16 which was transposed following the Wharton
three-step procedure (4).17 The trans,trans-dienyl moiety was then
introduced using Bergdhal’s modification of the Lipshutz methodol-
ogy with enyne 10 yielding 76% of 28 as a single stereoisomer.18
Finally, a Wolff-Kishner reduction19 and full deprotection20
concluded an 18-step synthesis of ent-Lepadin B from pyridine 5.
(17) Wharton, P. S.; Bohlen, D. H. J. Org. Chem. 1961, 26, 3615.
(18) (a) El-Batta, A.; Hage, R. T.; Plotkin, S.; Bergdahl, M. Org. Lett. 2004, 6,
107. (b) Lipshutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112,
7440–7441.
In conclusion, a new tandem metathesis reaction was presented
for which an RC-ROM mechanism was experimentally supported.
This process was successfully applied to the synthesis of cis-fused
polyhydroquinolines enabling a new stereoselective total synthesis
of lepadin B. We are further exploring the mechanism of the
metathesis sequence and applying this methodology to the synthesis
(19) Kim, S.; Oh, C. H.; Ko, J. S.; Ahn, K. H.; Kim, Y. J. J. Org. Chem. 1985,
50, 1927.
(20) Keck, G. E.; McLaws, M. D.; Wager, T. T. Tetrahedron 2000, 56, 9875.
JA8068215
9
J. AM. CHEM. SOC. VOL. 130, NO. 42, 2008 13875