C O M M U N I C A T I O N S
Scheme 3
Brønsted acid, but given the structure of the DMAP boroxinate
1
complex 8 and the similarities of the H and 11B NMR spectra of
8 and 10, it is considered likely that the imine 9 is bound in 10 in
a protonated form and that the AZ reaction involves a chiral
Brønsted acid and not a chiral Lewis acid as had been assumed.15
The implications of the discovery of this new class of chiral
Brønsted acids will be reported in due course.
Acknowledgment. This work was supported by NIH Grant GM
63019. We thank Daniel Holmes for assistance with NMR
experiments.
Supporting Information Available: Synthetic procedures and
spectral data for all new compounds and X-ray diffraction data and cif
files for 7 and 8. This material is available free of charge via the Internet
References
(1) For catalytic asymmetric aziridinations of imines and diazo compounds
with VANOL and VAPOL ligands, see: (a) Antilla, J. C.; Wulff, W. D.
J. Am. Chem. Soc. 1999, 121, 5099–5100. (b) Antilla, J. C.; Wulff, W. D.
Angew. Chem., Int. Ed. 2000, 39, 4518–4521. (c) Loncaric, C.; Wulff, W. D.
Org. Lett. 2001, 3, 3675–3678. (d) Patwardan, A.; Pulgam, V. R.; Zhang,
Y.; Wulff, W. D. Angew. Chem., Int. Ed. 2005, 44, 6169–6172. (e) Deng,
Y.; Lee, Y. R.; Newman, C. A.; Wulff, W. D. Eur. J. Org. Chem. 2007,
206, 8–2071. (f) Lu, Z.; Zhang, Y.; Wulff, W. D. J. Am. Chem. Soc. 2007,
129, 7185–7194. (g) Zhang, Y.; Desai, A.; Lu, Z.; Hu, G.; Ding, Z.; Wulff,
W. D. Chem.sEur. J. 2008, 14, 3785–3803. (h) Zhang, Y.; Lu, Z.; Desai,
A.; Wulff, W. D. Org. Lett. 2008, 10, 5429–5432.
(2) For catalytic asymmetric aziridinations of imines and diazo compounds
with other ligands, see: (a) Rasumussen, K. G.; Jorgensen, K. A. J. Chem.
Soc., Perkin Trans 1 1997, 1287. (b) Juhl, K.; Hazell, R. G.; Jorgensen,
K. A. J. Chem. Soc., Perkin Trans 1 1999, 2293. (c) Mayer, M. F.; Hossain,
M. M. J. Organomet. Chem. 2002, 654, 202. (d) Krumper, J. R.; Gerisch,
M.; Suh, J. M.; Bergman, R. G.; Tilley, T. D. J. Org. Chem. 2003, 68,
9705. (e) Redlich, M.; Hossain, M. M. Tetrahedron Lett. 2004, 45, 8987.
(f) Wipf, P.; Lyon, A. M. ARKIVOC 2007, xii, 91. (g) Hashimoto, T.;
Uchiyama, N.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 14380.
(3) Coombs, N. D.; Aldridge, S.; Wiltshire, G.; Kays (nee Coombs), D. L.;
Bresner, C.; Ooi, L.-L. J. Organomet. Chem. 2005, 690, 2725–2731.
(4) Dougherty, D. A.; Stauffer, D. Science 1990, 250, 1558.
(5) For reviews, see: (a) Nishio, M. Tetrahedron 2005, 61, 6923–6950. (b)
Nishio, M.; Hirota, M.; Umezawa, Y. The CH/π Interaction; Wiley-VCH:
1998.
in 99% yield and 98% ee which compares with the reported data
for this reaction in the AZ reaction (98% yield and 99% ee).1h,13
The ion pair 10 generated from the imine 9 will also catalyze the
reaction of an imine with a different N-substituent. The aziridine
14 was produced in 84% yield and 89% ee, and we have previously
observed that this aziridine can be obtained from imine 13 in 78%
yield and 90% ee with catalysts generated from B(OPh)3.1g,13
The original optimized procedure1g for the preparation of the
aziridination catalyst involved reacting VAPOL with 3 equiv of
B(OPh)3, and this is consistent with a boroxinate as the active
catalyst. The same 1:3 stoichiometry was also optimal in a catalyst
for an asymmetric heteroatom Diels-Alder reaction.14 Neither
procedure however involved the addition of any H2O. The formation
of a boroxine requires 3 equiv of H2O. The success and reproduc-
ibility of the AZ reaction apparently have depended on the fact
that commercial B(OPh)3 is never pure and contains partially
hydrolyzed boron-containing compounds.
Thus if the boroxinate is the active catalyst in the AZ reaction,
then after the aziridine is liberated, the resulting species would be
the protonated boroxinate 11 although we have not been able to
detect this species. Treatment of 10 with 1.2 equiv of EDA results
in the quantitative formation of 12 and to the loss of all absorptions
below 10 ppm in the 11B NMR (see Supporting Information).
Ostensibly, 11 could be either a chiral Lewis acid or a chiral
(6) Price, C. P.; Matzger, A. J. J. Org. Chem. 2005, 70, 1.
(7) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University
Press: 1997.
(8) (a) Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 1998, 102, 9925–
9932. (b) Bertolasi, V.; Gilli, P.; Ferretti, V.; Vaughan, K. New. J. Chem
1999, 23, 1261–1267.
(9) See page 66 in ref 7 for a discussion.
(10) For recent reviews, see: (a) Janiak, C. J. Chem. Soc., Dalton Trans. 2000,
3885–3896. (b) Roesky, H. W.; Andruh, M. Coord. Chem. ReV. 2003, 236,
91–119. (c) Bhosale, S.; Sisson, A.; Sakai, N.; Matile, S. Org. Biomol.
Chem. 2006, 4, 3031–3039.
(11) Ishiharta, K.; Kuirhara, H.; Matsumoto, M.; Yamamoto, H. J. Am. Chem.
Soc. 1998, 120, 6920.
(12) Beckett, M. A.; Brassington, D. S.; Owen, P.; Hursthouse, M. B.; Light,
M. E.; Malik, K. M. A.; Varma, K. S. J. Organomet. Chem. 1999, 585, 7.
(13) The reaction times reported for 121h and 141g is 24 h; however, the minimum
reaction time was not determined.
(14) Newman, C. A.; Antilla, J. C.; Chen, P.; Predeus, A. V.; Fielding, L.; Wulff,
W. D. J. Am. Chem. Soc. 2007, 129, 7216.
(15) Brønsted acids are known to catalyze the aziridination of imines with diazo
compounds; see ref 2g and: Williams, A.; Johnston, J. N. J. Am. Chem.
Soc. 2004, 126, 1612.
JA904589K
9
J. AM. CHEM. SOC. VOL. 131, NO. 43, 2009 15617