VCD Spectroscopic Properties of a b-Hairpin Miniprotein
449
4. Andersen, N. H.; Dyer, R. B.; Fesinmeyer, R. M.; Gai, F.; Liu, Z.;
Neidigh, J. W.; Tong, H. J Am Chem Soc 1999, 121, 9879–9880.
5. Palermo, N. Y.; Csontos, J.; Owen, M. C.; Murphy, R. F.; Lovas,
S. J Comput Chem 2007, 28, 1208–1214.
Pro-Glu-Thr-Gly turn flanked by two residues on each side
in a b-sheet or b-bridge conformation. At 608C, Trp9
changes from being in a b-sheet conformation to a random
meander conformation. In DMSO, the b-sheet structure of
the peptide is diminished significantly. Tyr2 and Trp9 form a
b-bridge, the turn is relaxed and the Asp3, Gly7, and Thr8
residues are in a random meander conformation.
6. Borics, A.; Murphy, R. F.; Lovas, S. Protein Pept Lett 2007, 14,
353–359.
7. Csontos, J.; Palermo, N. Y.; Murphy, R. F.; Lovas, S. J Comput
Chem 2008, 29, 1344–1352.
8. Hatfield, M. P. D.; Palermo, N. Y.; Csontos, J.; Murphy, R. F.;
Lovas, S. J Phys Chem B 2008, 112, 3503–3508.
9. Csontos, J.; Murphy, R. F.; Lovas, S. Biopolymers 2008, 89,
1002–1011.
The MD simulations confirm the results of the ECD and
VCD spectral analyses. CLN025 maintained a b-hairpin con-
formation in all environments studied. In TFE, the turn is
relaxed as shown by the shift in the second couplet of the
VCD spectra and its corresponding amide I0 bands in the IR
spectra as well as by the middle structures of the most popu-
lated cluster from the MD simulations and the DSSP analysis.
In MeOH, the turn in CLN025 is shortened, as seen by the
loss of turn content from the CDSSTR analysis of the ECD
spectra, the results of the peak-fitting analysis of the VCD
spectra and the middle structure of the peptide in MD analy-
ses. In MeOH, however, the peptide maintains the same tight
conformation as the peptide in water as indicated by the
position of the second couplet in the VCD spectra and
the assignment of the turn region in the middle structures of
the peptide. In DMSO, the turn is relaxed and is mostly
random meander as seen by the lack of an evident second
couplet in the VCD spectra as well as by the DSSP analysis
and the middle MD structures of the peptide.
10. Palermo, N. Y.; Csontos, J.; Murphy, R. F.; Lovas, S. Int J Quan-
tum Chem 2008, 108, 814–819.
11. Csontos, J.; Murphy, R. F.; Lovas, S. Adv Exp Med Biol 2009,
611, 79–80.
12. Palermo, N. Y.; Csontos, J.; Murphy, R. F.; Lovas, S. Adv Exp
Med Biol 2009, 611, 89–90.
13. Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A. Proc Natl
Acad Sci USA 2001, 98, 5578–5583.
14. Xu, Y.; Oyola, R.; Gai, F. J Am Chem Soc 2003, 125, 15388–
15394.
15. Takekiyo, T.; Wu, L.; Yoshimura, Y.; Shimizu, A.; Keiderling, T.
A. Biochemistry 2009, 48, 1543–1552.
16. Eidenschink, L. A.; Kier, B. L.; Huggins, K. N. L.; Andersen, N.
H. Proteins 2009, 75, 308–322.
17. Andersen, N. A.; Olsen, K. A.; Fesinmeyer, R. M.; Tan, X.; Hud-
son F. M.; Eidenschink, L. A.; Farazi, S. R. J Am Chem Soc
2006, 128, 6101–6110.
18. Riemen, A. J.; Waters, M. L. Biochemistry 2009, 48, 1525–
1531.
19. Honda, S.; Akiba, T.; Kato, Y. S.; Sawada, Y.; Sekijima, M.; Ishi-
mura, M.; Ooishi, A.; Watanabe, H.; Odahara, T.; Harata, K.
J Am Chem Soc 2008, 130, 15327–15331.
CONCLUSIONS
The VCD spectral properties of a 10 residue miniprotein,
CLN025, that forms a stable b-hairpin, with only naturally
occurring amino acids and without D-amino acids or cycliza-
tion to stabilize the b-hairpin, are reported. ECD, VCD, and
MD simulations confirm that CLN025 adopts a stable b-
hairpin conformation in the environments studied. The VCD
spectra exhibit a (2,1,2) pattern with bands at 1640 to
1656 cm21, 1667 to 1687 cm21, and 1679 to 1686 cm21. A
maximum IR absorbance was observed at 1647 to 1663 cm21
with bands at 1630 cm21, 1646 cm21, 1658 cm21, and 1675
to 1680 cm21 in the deconvoluted spectra, indicating b-
sheet, random meander, random meander, or loop and turn,
respectively. These results are similar to those reported for
peptides in which DPro was incorporated to nucleate the b-
turn in the hairpin and suggest that the VCD and IR absorb-
ance spectra reported here are typical of b-hairpins.
20. Terada, T.; Satoh, D.; Mikawa, T.; Ito, Y.; Shimizu, K. Proteins
2008, 73, 621–631.
21. Borics, A.; Murphy, R. F.; Lovas, S. Biopolymers 2003, 72, 21–24.
22. Copps, J.; Murphy, R. F.; Lovas, S. Pept Sci 2007, 88, 427–437.
23. Krimm, S.; Bandekar, J. Adv Protein Chem 1986, 38, 181–364.
24. Prestrelski, S. J.; Byler, D. M.; Thompson, M. P. Int J Pept Pro-
tein Res 1991, 37, 508–512.
25. Borics, A.; Murphy, R. F.; Lovas, S. Biopolymers 2006, 85, 1–11.
26. Wyssbrod, H. R.; Diem, M. Biopolymers 1992, 32, 1237–1242.
27. Shanmugam, G.; Polararapu, P. L. Biophys J 2004, 87, 622–630.
28. Keiderling, T. A.; Silva, R. A. G. D.; Yoder, G.; Dukor, R. K. Bio-
org Med Chem 1999, 7, 133–141.
29. Kubelka, J.; Keiderling, T. A. J Am Chem Soc 2001, 123, 12048–
12058.
30. Pancoska, P.; Yasui, S. C.; Keiderling, T. A. Biochemistry 1989,
28, 5917.
31. Baumruk, V.; Keiderling, T. A. J Am Chem Soc 1993, 115, 6939.
32. Zhao, C.; Polavarapu, P. L.; Das, C.; Balaram, P. J Am Chem Soc
2000, 122, 8228–8231.
REFERENCES
1. Ptitsyn, O. B. FEBS Lett 1991, 131, 197.
33. Hilario, J.; Kubelka, J.; Syud, F. A.; Gellman, S. H.; Keiderling, T.
A. Biopolymers 2002, 67, 233–236.
2. Ramirez-Alvarado, M.; Kortemme, T.; Blanco, F. J.; Serrano, L. 34. Hilario, J.; Kubelka, J.; Keiderling, T. A. J Am Chem Soc 2003,
Bioorg Med Chem 1999, 7, 93–103.
125, 7562–7574.
3. Maynard, A. J.; Sharman, G. J.; Searle, M. S. J Am Chem Soc 35. Szendrei, G. I.; Fabian, H.; Mantsch, H. H.; Lovas, S.; Nyeki, O.;
1998, 120, 1996–2007.
Schon, I.; Otvos, L., Jr. Eur J Biochem 1994, 226, 917–924.
Biopolymers