5442
T. M. Bridges et al. / Bioorg. Med. Chem. Lett. 18 (2008) 5439–5442
loaded with MP-B(OAc)3H (142 mg, 0.345 mmol, 2.42 mmol/g, 3.0 equivalents)
and 4-(2-keto-1-benzoimidazolinyl)piperidine (25 mg, 0.115 mmol,
agonism or undesirable ancillary pharmacology. For instance, 12h
afforded an over 2-fold improvement in M1 EC50, relative to TBPB,
but the degree of agonism diminished to 48% of CCh max. This was
a rare example in which the screening lead TBPB could not be opti-
mized, but possessed a profile that enabled both in vitro and
in vivo studies to be conducted. Moreover, this study further exem-
plifies the challenges in the development of allosteric ligands for
GPCRs. Further refinements to the TBPB scaffold are in progress
and will be reported in due course.
1.0 equivalents) or 5-chloro-1-(4-piperidinyl)-2-benzimidazolone (29 mg,
0.115 mmol, 1.0 equivalents). Then, one of 64 tertiary amine hydrates
(0.115 mmol, 1.0 equivalents) from the previous alkylation reactions was
added to each vial, and the reactions were stirred overnight at room
temperature. The next day, the solutions were filtered and washed with CH2Cl2
(3ꢁ 3 mL), then dried before purification by mass-directed preparative HPLC.
TBPB, 1-(10-2-methylbenzyl)-1,40-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-
one (9). To
a stirred solution of 4-piperidone monohydrate HCl (2.00 g,
13.02 mmol) in dimethylformamide (100 mL) was added 2-methylbenzyl
bromide (2.44 g, 13.02 mmol) and K2CO3 (3.60 g, 26.04 mmol, 2.0 equivalents)
at room temperature. The reaction was then monitored by analytical LC–MS, and
once judged complete; the reaction was separated with water and EtOAc. The
organics were next washed with a saturated solution of NaCl and dried over
MgSO4 before being concentrated in vacuo to afford 2.59 grams (90%) of the
Acknowledgments
The authors thank the NIH and NIMH for support of our pro-
grams (1RO1MH082867-01). The authors specifically acknowledge
the support of a Vanderbilt Institute of Chemical Biology Pilot Pro-
ject Grant, the Alzheimer’s Association (IIRG-07-57131). T.M.B.
acknowledges an ITTD (T90-DA022873) pre-doctoral training grant
and A.E.B. is supported by a National Research Service Award
(1FM32 MH079678-01).
hydrate form of the piperidone 1-(2-methylbenzyl)piperidin-4,4-diol as
a
colorless oil. Analytical LC–MS (J-Sphere80-C18, 3.0 ꢁ 50.0 mm, 4.1 min
gradient, 5% [0.05% TFA/CH3CN]:95% [0.05% TFA/H2O]:1.64 min, >99% (214 nm,
254 nm and ELSD) M+1 peak m/e 204.1; 1H NMR (400 MHz, DMSO-d6) d7.28 (m,
1H), 7.16 (m, 3H), 3.53 (s, 2H), 2.67 (t, J = 6.4 Hz, 4H), 2.36 (s, 3H), 2.32 (t,
J = 6.4 Hz, 4H). 13C NMR (100 MHz, DMSO-d6) d 137.0, 136.4, 130.1, 129.3, 127.0,
125.4, 58.7, 52.4, 40.6, 18.8; HRMS calcd for C13H20NO2[M+H]; 222.1494 found
222.1488. 1-(2-Methylbenzyl)piperidin-4,4-diol (2.00 g, 9.04 mmol) was then
brought up in a stirred solution of CH2Cl2 (100 mL) to which 4-(2-keto-1-
benzimidazolinyl)piperidine (2.16 g, 9.95 mmol, 1.1 equivalents) was added at
room temperature. Then, MP-triacetoxyborohydride (13.57 g, 27.132 mmol
[2.0 mmol/g loading], 3.0 quivalents) was added and the reaction was
monitored by analytical LC–MS. Once judged complete, the reaction was
filtered and the filtrate was purified by mass-directed preparative HPLC to
afford 2.92 g (80%) of title compound as a pure white solid. Analytical LC–MS
(J-Sphere80-C18, 3.0 ꢁ 50.0 mm, 4.1 min gradient, 5% [0.05% TFA/
CH3CN]:95%[0.05% TFA/H2O]:2.34 min, >99% (214 nm, 254 nm and ELSD) M+1
peak m/e 405.2; 1H NMR (400 MHz, DMSO-d6) d 10.94 (s, 1H), 9.97 (br s, 1H), 7.31
(d. J = 4.4 Hz, 1H), 7.00 (m, 3H), 4.57 (m, 1H), 4.12 (br d, J = 11.6 Hz, 2H), 4.04 (q,
J = 7.2 Hz, 2H), 3.59 (br d, J = 11.2 Hz, 2H), 3.47 (m, 1H), 3.24 (m, 2H), 2.82 (m, 2H),
2.66 (m, 2H), 2.05 (m, 2H), 1.94 (br d, J = 12.4 Hz, 2H), 1.59 (m, 2H), 1.19 (t,
J = 6.8 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) d 154.4, 153.6, 128.7, 128.4, 120.9,
120.3, 109.1, 108.6, 62.5, 60.9, 48.1, 46.6, 42.1, 25.8, 14.5; HRMS calcd for
C25H33N4O[M+H]; 405.2654 found 405.2654; Ethyl 4-(2-oxo-2,3-dihydro-1H-
References and notes
1. (a) Bonner, T. I.; Buckley, N. J.; Young, A. C.; Brann, M. R. Science 1987, 237, 527;
(b) Bonner, T. I.; Young, A. C.; Buckley, N. J.; Brann, M. R. Neuron 1988, 1, 403.
2. Felder, C. C.; Bymaster, F. P.; Ward, J.; DeLapp, N. J. Med. Chem. 2000, 43, 4333.
3. Bymaster, F. P.; McKinzie, D. L.; Felder, C. C.; Wess, J. Neurochem. Res. 2003, 28,
437.
4. Eglen, R. M.; Choppin, A.; Dillon, M. P.; Hedge, S. Curr. Opin. Chem. Biol. 1999, 3,
426.
5. Birdsall, N. J. M.; Nathanson, N. M.; Schwarz, R. D. Trends Pharm. Sci. 2001, 22,
215.
6. (a) Eglen, R. A.; Choppin, A.; Watson, N. Trends Pharm. Sci. 2001, 22, 409; (b)
Tarsy, D.; Simon, D. K. N. Engl. J. Med. 2006, 335, 818.
7. (a) Fisher, A. Jpn. J. Pharmacol. 2000, 84, 101; (b) Caccamo, A.; Oddo, S.; Billings,
L. M.; Green, K. N.; Martinez-Coria, H.; Fisher, A.; LaFerla, F. M. Neuron 2006, 49,
671.
8. Jones, C. K.; Brady, A. E.; Davis, A. A.; Xiang, Z.; Bubser, M.; Tantawy, M. N.; Kane,
A.; Bridges, T. M.; Kennedy, J. P.; Bradley, S. R.; Peterson, T.; Baldwin, R. M.;
Kessler, R.; Deutch, A.; Levey, A. I.; Lindsley, C. W.; Conn, P. J. J. Neurosci., in press.
9. Langmead, C. J.; Fry, V. A. H.; Forbes, I. T.; Branch, C. L.; Christopoulos, A.; Wood,
M. D.; Hedron, H. Mol. Pharm. 2006, 69, 236.
10. Lazareno, S.; Gharagozloo, P.; Kuonen, D.; Popham, A.; Birdsall, N. J. Mol. Pharm.
1998, 53, 573.
11. Bodick, N. C.; Offen, W. W.; Levey, A. I.; Cutler, N. R.; Gauthier, S. G.; Satlin, A.;
Shannon, H. E.; Tollefson, G. D.; Rasmussen, K.; Bymaster, F. P.; Hurley, D. J.;
Potter, W. Z.; Paul, S. M. Arch. Neurol. 1997, 54, 465.
12. Shekhar, A.; Potter, W. Z.; Lightfoot, J.; Lienemann, J.; Dube, S.; Mallinckrodt, C.;
Bymaster, F. P.; McKinzie, D. L.; Felder, C. C.; Am. J. Psychiatry, 2008 Jul 1
(E-publishing ahead of print).
13. Kinney, G. G. Neuropsychopharmacology 2006, 31, S26.
14. Kennedy, J. P.; Williams, L.; Bridges, T. M.; Daniels, R. N.; Weaver, D.; Lindsley,
C. W. J. Comb. Chem. 2008, 10, 345.
15. Leister, W. H.; Strauss, K. A.; Wisnoski, D. D.; Zhao, Z.; Lindsley, C. W. J. Comb.
Chem. 2003, 5, 322.
benzo[d]imidazol-1-yl)-1,40-bipiperidine-10-carboxylate (12a). To
a
stirred
solution of 4-(2-keto-1-benzimidazolinyl)piperidine (50 mg, 0.230 mmol) in
CHCl2 (3 mL) was added ethyl 4-oxo-1-piperidinecarboxylate (43.3 mg,
0.253 mmol, 1.1 equivalents) and MP-B(OAc)3H (285 mg, 0.691 mmol,
2.42 mmol/g, 3.0 equivalents). The reaction was then monitored by analytical
LC–MS, and once judged complete; the reaction was filtered and concentrated.
Purification by mass-directed preparative HPLC afforded 32.50 mg (38%) of title
compound as
a beige-white solid. Analytical LC/MS (J-Sphere80-C18,
3.0 ꢁ 50.0 mm, 4.1 min gradient, 5% [0.05% TFA/CH3CN]:95% [0.05% TFA/H2O]:
2.05 min, >99% (214 nm, 254 nm and ELSD) M+1 peak m/e 373.2; 1H NMR
(400 MHz, DMSO-d6) d10.94 (s, 1H), 9.97 (br s, 1H), 7.31 (d, J = 4.4 Hz, 1H), 7.00
(m, 3H), 4.57 (m, 1H), 4.12 (br d, J = 11.6 Hz, 2H), 4.04 (q, J = 7.2 Hz, 2H), 3.59 (br d,
J = 11.2 Hz, 2H), 3.47 (m, 1H), 3.24 (m, 2H), 2.82 (m, 2H), 2.66 (m, 2H), 2.05 (m,
2H), 1.94 (br d, J = 12.4 Hz, 2H), 1.59 (m, 2H), 1.19 (t, J = 6.8 Hz, 3H). 13C NMR
(100 MHz, DMSO-d6) d 154.4, 153.6, 128.7, 128.4, 120.9, 120.3, 109.1, 108.6, 62.5,
60.9, 48.1, 46.6, 42.1, 25.8, 14.5; HRMS calcd for C20H29N4O3[M+H]; 373.2240
found 373.2235.
17. Burgey, C. S.; Stump, C. A.; Nguyen, D. M.; Deng, J. Z.; Quigley, A. G.; Norton, B.
R.; Bell, I. M.; Mosser, S. D.; Salvatore, C. A.; Rutledge, R. Z.; Kane, S. A.; Koblan,
K. S.; Vacca, J. P.; Graham, S. L.; Williams, T. M. Bioorg. Med. Chem. Lett. 2006, 16,
5052.
18. O’Brien, J. A.; Lemaire, W.; Chen, T-B.; Chang, R. S. L.; Jacobson, M. A.; Ha, S. N.;
Lindsley, C. W.; Sur, C.; Pettibone, D. J.; Conn, J.; Wiliams, D. L. Mol. Pharmacol
2003, 64, 731.
19. Zhao, Z.; Wisnoski, D. D.; O’Brien, J. A.; Lemiare, W.; Williams, D. L., Jr.;
Jacobson, M. A.; Wittman, M.; Ha, S.; Schaffhauser, H.; Sur, C.; Pettibone, D. J.;
Duggan, M. E.; Conn, P. J.; Hartman, G. D.; Lindsley, C. W. Bioorg. Med. Chem.
Lett. 2007, 17, 1386.
20. Sharma, S.; Rodriguez, A.; Conn, P. J.; Lindsley, C. W. Bioorg. Med. Chem. Lett.
2008, 18, 4098.
16. Experimental details: Synthesis of N-benzyl piperidinones. Each of 64 glass
reaction vials containing 3 mL of CH2 Cl2 and 0.1 mL of MeOH were loaded with
piperidone hydrochloride (25 mg, 0.185 mmol, 1.0 equivalents) and K2 CO3
(51 mg, 0.370 mmol, 2.0 equivalents). Then, one of 64 functionalized benzyl
bromides (0.185 mmol, 1.0 equivalents) was added to each reaction tube. The
reactions were stirred overnight at room temperature, partitioned between
CH2Cl2 and H2O, and the organics were concentrated on a heat–air block.
Purification by preparative LC–MS was performed to afford N-benzyl
piperidinones products for subsequent reductive amination. Reductive
amination. Each of 64 glass reaction vials containing 3 mL of CH2Cl2 were