4986
T. Ganesh et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4982–4987
layer was on usual work up gave black residue, which was purified by silica gel
Table 3
Predicted cell membrane permeabilitya
chromatography by eluting with 20–30% ethyl acetate in hexanes to provide
diol, 1-(2-hydroxy-5-nitrophenyl)naph-thalen-2-ol (400 mg, 87%). 1H NMR
(400 MHz, CDCl3): d 8.23 (dd, 1H), 8.18 (d, 1H), 7.83 (d, 1H), 7.80 (dd, 1H), 7.37
(m, 2H), 7.26 (m, 1H), 7.21 (d, 1H), 7.14 (d, 1H). 13C NMR (100 MHz): d 160.3,
151.9, 141.8, 133.1, 131.9, 129.4, 128.9, 128.7, 128.0, 126.5, 124.4, 123.8, 121.7,
2
6c
13
17
Ranges (nm/s)
<25 poor,
>500 great
<25 poor,
>500 great
Caco2
242
84.9
35.1
81.8
249.7
491.9
118.1, 117.0, 112.5. HRMS Calcd for
C16H12N4O, 282.07583; observed
282.07608 (M+H). To the above diol-compound (400 mg, 1.43 mmol) in
tetrahydrofuran (10 ml) were added (Boc)2O (4.3 mmol, 3 equiv), DMAP (cat),
and Et3N (3.6 mmol, 2.5 equiv), and the reaction mixture was refluxed for 4 h.
Reaction mixture was cooled and filtered through a short silica gel column,
eluting with 10% ethyl acetate in hexanes. The filtrate was concentrated to give
the Boc-protected product (700 mg, 99%). 1H NMR (400 MHz, CDCl3): d 8.35
(dd, 1H), 8.28 (d, 1H), 7.94 (d, 1H), 7.88 (d, 1H), 7.52–7.38 (m, 5H), 1.36 (s, 9H),
1.14 (s, 9H). The above compound (650 mg, 1.35 mmol) was dissolved in
EtOAc/MeOH (6:2, 6 ml) and Pd–C was added (10% on charcoal) and
hydrogenated at 12 psi for 45 min. The catalyst was filtered off through a
short silica gel column by eluting with dichloromethane. The filtrate was
concentrated to give amino-product (490 mg, 80%), which was used for the
next reaction. 1H NMR (400 MHz, CDCl3): d 7.84 (d, 1H), 7.80 (dd, 1H), 7.61 (d,
1H), 7.39 (m, 3H), 7.06 (d, 1H), 6.72 (dd, 1H), 6.61 (d, 1H), 1.39 (s, 9H), 1.07 (s,
9H). HRMS Calcd for C26H30NO6, 452.20576; observed 452.20676 (M+H). To the
above solution of amine (40 mg, 0.088 mmol) in pyridine (1 ml) was added 2,5-
dichlorobenzenesulfonyl chloride (36 mg, 1.4 equiv) and stirred for 8 h. The
pyridine was removed and the residue was dissolved in dichloromethane
(2 ml) and TFA (0.3 ml) was added, and the reaction mixture was stirred at
room temperature for 8 h. The reaction mixture was diluted with ethyl acetate
and worked up as usual. The crude mass obtained was purified by silica gel
preparative-TLC eluting with 0.8% methanol in dichloromethane to provide 2
(35 mg, 90%). 1H NMR (400 MHz, CDCl3): d 7.91 (d, 1H), 7.82 (d, 1H), 7.78 (d,
1H), 7.42 (m, 2H), 7.34 (m, 2H), 7.21 (m, 2H), 6.98 (d, 2H), 6.95 (d, 1H). 13C NMR
(100 MHz): d 153.4, 151.7, 137.5, 134.3, 133.8, 133.0, 132.8, 131.9, 131.4,
129.7, 129.3, 128.6, 128.4, 127.7, 127.6, 127.0, 124.2, 123.7, 120.7, 118.0, 117.7,
MDCK
439.3
128.8
a
Schrodinger’s QikProp employed for these calculations.
Acknowledgments
This work was supported by the US National Institutes of Health
1 U54 HG003918-02 and 1R03MH076499-01, and encouraged by
Professor Dennis Liotta (Emory University).
References and notes
1. Whitesell, L.; Lindquist, S. L. Nat. Rev. Cancer 2005, 5, 761.
2. Solit, D. B.; Chiosis, G. Drug Discov. Today 2008, 13, 38. and reference cited their
in.
3. Neckers, L. J. Bioscience 2007, 32, 517.
4. Picard, D. Cell. Mol. Life Sci. 2002, 59, 1640.
5. Shames, D. S.; Minna, J. D. Proc. Nat. Acad. Sci. U.S.A. 2008, 105, 1389.
6. Mimnaugh, E. G.; Chavany, C.; Neckers, L. J. Biol. Chem. 1996, 271, 22796.
7. Sepp-Lorenzino, L.; Ma, Z.; Lebwohl, D. E.; Vinitsky, A.; Rosen, N. J. Biol. Chem.
1995, 270, 16580.
8. Prodromou, C.; Roe, S. M.; O’Brien, R.; Ladbury, J. E.; Piper, P. W.; Pearl, L. H. Cell
1997, 90, 65.
113.1. HRMS Calcd for C22H15Cl2NO4S, 459.00934; observed 459.009343.
Similar procedures were employed to make other compounds. 1H NMR data
(recorded on Unity-400 MHz in CDCl3) for selected compounds are given
below. Compound 5a: 8.15 (dd, 1H), 8.0 (d, 1H), 7.92 (d, 1H), 7.83 (dd, 1H), 7.36
(m, 4H), 6.76 (d, 1H), 4.10 (q, 2H), 1.24 (t, 3H). Compound 6b: 7.69 (dd, 1H), 7.64
(d, 1H), 7.30–7.12 (m, 5H), 7.0 (s, 1H), 6.94 (d, 1H), 6.88 (d, 1H), 6.85 (d, 1H),
6.42 (dd, 2H), 3.84 (s, 3H), 3.78 (s, 3H). Compound 6c: 7.80 (m, 2H), 7.40 (d, 1H),
7.33 (m, 2H), 7.24–7.15 (m, 2H), 7.10 (m, 1H), 7.0 (d, 1H), 6.80 (d, 1H), 6.54 (br
s, 1H), 6.43 (dd, 1H), 6.34 (d, 1H), 3.71 (s, 3H). Compound 6d: 7.69 (m, 2H), 7.38
(d, 1H), 7.21 (m, 2H), 7.13 (m, 2H), 6.88 (m, 1H), 6.83 (dd, 2H), 6.30 (dd, 1H),
6.26 (d, 1H). Compound 7b: 7.91 (d, 1H), 7.77 (d, 2H), 7.42 (dd, 1H), 7.36–7.27
(m, 3H), 7.20 (d, 1H), 7.12 (dd, 1H), 6.97 (dd, 2H), 6.81 (d, 1H), 6.75 (d, 1H).
Compound 8a: 7.94 (m, 2H), 7.15 (t ꢁ d, 1H), 7.08 (d, 1H), 6.87 (t, 2H), 6.64 (d,
1H). Compound 8c: 8.18 (d, 1H), 8.06 (dd, 1H), 7.24 (m, 2H), 6.94 (m, 3H).
Compound 9a: 7.89 (s, 1H), 7.40 (s, 2H), 7.22 (t, 2H), 6.95 (m, 6H), 6.80 (dd, 1H).
Compound 10a: 7.58 (d, 2H), 7.24 (m, 2H), 7.20 (d, 1H), 7.03 (dd, 1H), 6.96 (m,
3H), 6.77 (d, 1H), 6.68 (d, 1H). Compound 10c: 7.92 (m, 1H), 7.43 (m, 2H), 7.28
(m, 1H), 7.0–6.96 (m, 6H), 6.90 (d, 1H), 6.72 (d, 1H). Compound 11. 8.0 (m, 2H),
6.80 (d, 1H), 6.72 (d, 1H), 6.42 (d, 1H), 5.93 (d, 2H), 3. 72 (s, 3H). Compound 12a:
7.97 (dd, 1H), 7.53 (t, 2H), 7.21 (m, 3H), 6.84 (d, 1H), 6.52 (d, 1H), 5.90 (dd, 2H),
3.68 (s, 3H). Compound 13: 7.92 (s, 1H), 7.41 (s, 2H), 6.98 (m, 3H), 6.86 (d, 1H),
6.72 (d, 1H), 6.44 (d, 1H), 3.59 (s, 3H). Compound 16: 8.32 (d, 1H), 8.08 (d, 1H),
7.00 (d, 1H), 6.68 (d, 1H), 6.40 (d, 1H), 5.89 (s, 2H). Compound 17: 7.89 (dd, 1H),
7.36 (m, 2H), 7.16 (d, 1H), 7.0 (dd, 1H), 6.82 (d, 1H), 6.63 (d, 1H), 6.38 (d, 1H),
5.82 (s, 2H). Compound 19a: 7.49 (dd, 2H), 7.28 (m, 1H), 7.19 (m, 3H), 6.98 (d,
1H), 6.48 (d, 1H), 6.22 (d, 1H), 5.62 (dd, 2H). Compound 21a: 7.86 (t, 1H), 7.25
(m, 3H), 7.18 (d ꢁ t, 1H), 7.12 (t, 1H), 6.93 (d ꢁ q, 1H), 6.45 (d, 1H), 6.19 (d, 1H),
5.70 (s, 2H). Compound 22: 6.93 (t, 1H), 6.73 (d, 1H), 6.66 (m, 2H), 5.90 (d, 1H),
4.98 (s, 2H), 3.30 (s, 3H). Compound 23a: 7.62 (d, 2H), 7.16 (d, 2H), 7.12 (m, 2H),
7.0 (m, 2H), 6.66 (d, 1H), 6.36 (d, 1H), 5.85 (s, 2H). Compound 23c: 8.21 (d, 1H),
7.80 (dd, 1H), 7.61 (d, 1H), 7.10 (m, 3H), 6.67 (d, 1H), 6.34 (d, 1H), 5.88 (s, 2H).
All the synthetic products showed satisfactory analytical (13C NMR, MS) data,
consistent with the assigned structure.
9. Chiosis, G.; Huezo, H.; Rosen, N.; Mimnaugh, E.; Whitesell, L.; Neckers, L. Mol.
Cancer Ther. 2003, 2, 123.
10. Kamal, A.; Thao, L.; Sensintaffar, J.; Zhang, L.; Boehm, M. F.; Fritz, L. C.; Burrows,
F. J. Nature 2003, 425, 407.
11. (a) Cheung, K.-M. J.; Matthews, T. P.; James, K.; Rowlands, M. G.; Boxall, K. J.;
Sharp, S. Y.; Maloney, A.; Roe, S. M.; Prodromou, C.; Pearl, L. H.; Aherne, G. W.;
McDonald, E.; Workman, P. Bioorg. Med. Chem. Lett. 2005, 15, 3338; (b)
Gopalsamy, A.; Shi, M.; Golas, J.; Vogan, E.; Jacob, J.; Johnson, M.; Lee, F.;
Nilakantan, R.; Petersen, R.; Svenson, K.; Chopra, R.; Tam, M. S.; Wen, Y.;
Ellingboe, J.; Arndt, K.; Boschelli, F. J. Med. Chem. 2008, 51, 373; (c) Avila, C.;
Hadden, M. K.; Ma, Z.; Kornilayev, B. A.; Ye, Q.-Z.; Blagg, B. S. Bioorg. Med. Chem.
Lett. 2006, 16, 3005; (d) Barluenga, S.; Wang, C.; Fontaine, J.-G.; Aouadi, K.;
Beebe, K.; Tsutsumi, S.; Neckers, L.; Winssinger, N. Angew. Chem., Int. Ed. Engl.
2008, 47, 4432.
12. Immormino, R. M.; Kang, Y.; Chiosis, G.; Gewirth, D. T. J. Med. Chem. 2006, 49,
953.
13. Kasibhatla, S. R. et al J. Med. Chem. 2007, 50, 2767.
14. Sharp, S. W. et al Mol. Cancer Ther. 2007, 6, 1198.
16. Ganesh, T.; Min, J.; Thepchatri, P.; Du, Y.; Li, L.; Lewis, L.; Wilson, L.; Fu, H.;
Chiosis, G.; Dingledine, R.; Liotta, D.; Snyder, J. P.; Sun, A. Bioorg. Med. Chem.
2008, 16, 6903.
17. Barril, X.; Brough, P.; Drysdale, M.; Hubbard, R. E.; Massey, A.; Surgenor, A.;
Wright, L. Bioorg. Med. Chem. Lett. 2005, 15, 5187.
18. Rowlands, M. G.; Newbatt, Y. M.; Prodromou, C.; Pearl, L. H.; Workman, P.;
Aherne, W. Anal. Biochem. 2004, 327, 176.
19. Howes, R. et al Anal. Biochem. 2006, 350, 202.
20. Avdeenko, A. P. Zh. Org. Khim. 1989, 25, 2375.
21. For a recent review on Suzuki–Miyaura cross-coupling reaction, please see
Kotha, S.; Lahiri, K. Eur. J. Org. Chem. 2007, 1221.
22. Torii, S.; Tanaka, H.; Morisaki, K. Tetrahedron Lett. 1985, 26, 1655.
24. (a) Schrodinger Ref: Glide, version 4.5, Schrodinger, LLC, New York, NY, 2007.;
(b) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D.
T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shae, D. E.; Francis, P.;
Shenkin, P. S. J. Am. Chem. Soc. 2004, 47, 1739.
25. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235.
26. (a) Prime, version 1.6, Schrödinger, LLC, New York, NY, 2007.; (b) Maestro,
version 8.0, Schrödinger, LLC, New York, NY, 2007.; (c) Huang, N.;
Kalyanaraman, C.; Bernacki, K.; Jacobson, M. P. Phys. Chem. Chem. Phys. 2006,
8, 5166.
27. Weeratunga, G.; Jaworska-Sobiesiak, A.; Horne, S.; Rodrigo, R. Can. J. Chem.
1987, 65, 2019.
23. Synthesis of
2 (typical procedures): 2-Bromo-4-nitroanisole (4b) (425 mg,
1.8 mmol), 2-ethoxynaphthalen-1-ylboronic acid (800 mg, 2 equiv), Pd(PPh3)4
(100 mg, 5 mol%), and K2CO3 (735 mg, 3 equiv) were charged into a microwave
reaction vessel. To this vessel, a three-solvent mixture (5 ml) (DME/EtOH/H2O,
3:2:1) was added, and then the reaction mixture was irradiated in Biotage-
microwave initiator for 15 min. Reaction mixture was partitioned between
ethyl acetate and water. The organics were separated and washed with water,
brine, dried over Na2SO4, and concentrated (usual work up). The crude mass
obtained was purified by chromatography over silica gel, eluting with 5–8%
ethyl acetate in hexanes to provide 2-ethoxy-1-(2-methoxy-5-nitrophenyl)
naphthalene (5b) (580 mg, 98%). 1H NMR (400 MHz, CDCl3): d 8.35 (dd, 1H),
8.21 (d, 1H), 7.91 (d, 1H), 7.84 (m, 1H), 7.36 (m, 4H), 7.08 (d, 1H), 4.12 (q, 2H),
3.77 (s, 3H), 1.24 (t, 3H). 13C NMR (100 MHz): d 163.2, 153.9, 141.5, 133.3,
130.2, 129.2, 128.7, 128.4, 126.9, 126.7, 125.5, 124.6, 123.9, 119.9, 115.1, 110.7,
65.3, 56.4, 15.2. HRMS Calcd for C19H18N4O, 324.12263; observed 324.12303
(M+H). To a solution of 5b (525 mg, 1.62 mmol) in dichloromethane (15 ml),
BBr3 (3 equiv) was added at ꢀ78 °C and the reaction mixture was brought to
room temperature overnight. Reaction mixture was quenched by addition to
ice-cold water, and the product was extracted with ethyl acetate. The organic
28. Du, Y.; Rodina, A.; Aguirre, J.; Felts, S.; Dingledine, R.; Fu, H.; Chiosis, G. J.
Biomol. Screen. 2007, 12, 915.
29. QikProp, version 3.0, Schrodinger, LLC, New York, NY, 2005.
30. The SKBr3 breast cancer cells were grown in RPMI-1640 medium
supplemented with 10% FBS. 1250 cells in 50 ll of culture medium were
plated in 384-well microtiter plates (Costar) and allowed to attach for
overnight. After treated with either compounds or vehicle (DMSO) for 72 h,
the viability of the cells was measured by CellTiter-Blue (Promega). Briefly,