Journal of the American Chemical Society
COMMUNICATION
revealed the location of the probe in the cytoplasm of these living
RAW264.7 cells (Figure 6b,c).21 After treating the cells with the
same stimulants used in Figure 5b, we observed greater fluo-
rescence enhancement (Figure 6d) than with the control cells,
indicating an increase in the peroxynitrite level in the cytoplasm.
By co-staining with rhodamine 6G and overlaying with bright-
field images, we confirmed that the probe was retained in the
cytoplasm (Figure 6e,f).
’ REFERENCES
(1) (a) Ferrer-Sueta, G.; Radi, R. ACS Chem. Biol. 2009, 4, 161.
(b) Pacher, P.; Beckman, J. S.; Liaudet, L. Physiol. Rev. 2007, 87, 315.
(2) (a) Szabꢀo, C.; Ischiropoulos, H.; Radi, R. Nat. Rev. Drug Discovery
2007, 6, 662.(b) Beckman, J. S. The Physiological and Pathophysiological
Chemistry of Nitric Oxide. In Nitric Oxide: Principles and Actions;
Lancaster, J., Ed.; Academic Press: San Diego, CA, 1996.
(3) Nagano, T. J. Clin. Biochem. Nutr. 2009, 45, 111.
(4) Ashki, N.; Hayes, K. C.; Bao, F. Neuroscience 2008, 156, 107.
(5) (a) Ducrocq, C.; Blanchard, B.; Pignatelli, B.; Ohshima, H. Cell.
Mol. Life Sci. 1999, 55, 1068. (b) Masumoto, H.; Kissner, R.; Koppenol,
W. H.; Sies, H. FEBS Lett. 1996, 398, 179.
(6) (a) Wiseman, H.; Halliwell, B. Biochem. J. 1996, 313, 17. (b) Pacher,
P.; Beckman, J. S.; Liaudet, L. Physiol. Rev. 2007, 87, 315. (c) Beckman, J. S.;
Carson, M.; Smith, C. D.; Koppenol, W. H. Nature 1993, 364, 584.
(d) Estevez, A. G.; Crow, J. P.; Sampson, J. B.; Reiter, C.; Zhuang, Y.;
Richardson, G. J.; Tarpey, M. M.; Barbeito, L.; Beckman, J. S. Science 1999,
286, 2498. (e) Schieke, S. M.; Briviba, K.; Klotz, L.-O.; Sies, H. FEBS Lett.
1999, 448, 301.
We next asked whether the probe could be used to monitor
ONOOÀ reversible redox cycles in living cells. Living RAW264.7
cells loaded with 10.0 μM Cy-PSe for 5 min showed only faint
fluorescence (Figure 7a). However, the same Cy-PSe-loaded cells
incubated with 10.0 μM 3-morpholinosydnonimine (SIN-1), a
peroxynitrite donor,4 resulted in a substantial increase in intracel-
lular fluorescence after 10 min as the probe detected oxidative stress
(Figure 7b). The cells were then treated with the ROS scavenger
glutathione S-transferase (GST, EC 2.5.1.18; 125 units/mL). After
10 min, the intracellular fluorescence decreased to the baseline level
as GST reduced the cell environment (Figure 7c). Addition of a
second aliquot of SIN-1 oxidant resulted in another burst of
oxidative stress and an increase in intracellular fluorescence
(Figure 7d). These experiments demonstrated that the low levels
of intracellular fluorescence of Figure 7c were not due to
photobleaching or dye leakage. To evaluate the cytotoxicity of
the probe, we performed an MTT assay on RAW264.7 cells with
probe concentrations from 0.01 μM to 10.0 mM. The results
showed an IC50 value of 500 μM, clearly demonstrating that the
probe was of low toxicity toward cultured cell lines under the
experimental conditions at the concentration of 10.0 μM. This
result suggests that Cy-PSe is capable of sensing redox cycles
through reversible fluorescence responses in living cells.
(7) Kermis, H. R.; Kostov, Y.; Harms, P.; Rao, G. Biotechnol. Prog.
2002, 18, 1047.
(8) (a) Ueno, T.; Urano, Y.; Setsukinai, K.; Takakusa, H.; Kojima, H.;
Kikuchi, K.; Ohkubo, K.; Fukuzumi, S.; Nagano, T. J. Am. Chem. Soc. 2004,
126, 14079. (b) Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem.
Soc. 2006, 128, 10640. (c) Yang, D.; Wang, H.-L.; Sun, Z.-N.; Chung, N.-W.;
Shen, J.-G. J. Am. Chem. Soc. 2006, 128, 6004. (d) Sun, Z.-N.; Wang, H.-L.;
Liu, F.-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org. Lett. 2009, 11, 1887.
(e) Hempel, S. L.; Buettner, G. R.; O’Malley, Y. Q.; Wessels, D. A.; Flaherty,
D. M. Free Radical Biol. Med. 1999, 27, 146. (f) Miyasaka, N.; Hirata, Y. Life
Sci. 1997, 61, 2073. (g) Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.;
Hanaoka, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2010, 132, 2795.
(h) Peng, T.; Yang, D. Org. Lett. 2010, 12, 4932.
(9) Miller, E. W.; Bian, S. X.; Chang, C. J. J. Am. Chem. Soc. 2007,
129, 3458.
(10) Winterbourn, C. C. Nat. Chem. Biol. 2008, 4, 278.
(11) Rotruck, J. T.; Pope, A. L.; Ganther, H. E.; Swanson, A. B.;
Hafeman, D. G.; Hoekstra, W. G. Science 1973, 179, 588.
(12) (a) Flohꢀe, L. In Glutathione: Chemical, Biochemical, and Medical
Aspects; Dolphin, D., Poulson, R., Avramovic, O., Eds.; Wiley: New York,
1989. (b) Wendel, A.; Pilz, W.; Ladenstein, R.; Sawatzki, G.; Weser, U.
Biochim. Biophys. Acta 1975, 377, 211. (c) Masumoto, H.; Kissner, R.;
Koppenol, W. H.; Sies, H. FEBS Lett. 1996, 398, 179.
(13) Tang, B.; Yu, F.; Li, P.; Tong, L.; Duan, X.; Xie, T.; Wang, X.
J. Am. Chem. Soc. 2009, 131, 3016.
(14) (a) Nogueira, C. W.; Zeni, G.; Rocha, J. B. Chem. Rev. 2004,
104, 6255. (b) Mugesh, G.; du Mont, W.-W.; Sies, H. Chem. Rev. 2001,
101, 2125.
In summary, we have developed an NIR reversible fluorescent
probe that exhibits high sensitivity and selectivity in monitoring
peroxynitrite oxidation and reduction events under physiological
conditions in aqueous solution and living cells. The probe
effectively avoids the influence of autofluorescence in biological
systems and poses minimal toxicity to cells. It can also be used for
real-time imaging of living cells. Our results show that the Cy-PSe
probe can be used to visualize intracellular peroxynitrite levels
with negligible background fluorescence and cellular toxicity.
’ ASSOCIATED CONTENT
(15) Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.;
Hirata, Y.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 3684.
(16) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Friesner, R. A.;
Murphy, R. B.; Beachy, M. D.; Ringnalda, M. N.; Pollard, W. T.; Dunietz,
B. D.; Cao, Y. X. J. Phys. Chem. A 1999, 103, 1913.(c) Frisch, M. J.; et al.
Gaussian 09, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
(17) (a) de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley,
A. J.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
(b) DiCesare, N.; Lakowicz, J. R. J. Phys. Chem. A 2001, 105, 6834.
(18) Pastore, A.; Piemonte, F.; Locatelli, M.; Lo Russo, A.; Gaeta,
L. M.; Tozzi, G.; Federici, G. Clin. Chem. 2001, 47, 1467.
(19) (a) Iovine, N. M.; Pursnani, S.; Voldman, A.; Wasserman, G.;
Blaser, M. J.; Weinrauch, Y. Infect. Immun. 2008, 76, 986. (b) Salonen,
T.; Sareila, O.; Jalonen, U.; Kankaanranta, H.; Tuominen, R.; Moilanen,
E. Br. J. Pharmacol. 2006, 147, 790.
S
Supporting Information. Additional CFM images; more
b
experimental materials for the paper; theoretical and computa-
tional methods; synthesis; 1H NMR, 13C NMR, 77Se NMR, and
MS spectra of adducts; and complete ref 16c. This material is
’ AUTHOR INFORMATION
Corresponding Author
Author Contributions
†These authors contributed equally.
(20) Muijsers, R. B.; Van Den Worm, E.; Folkerts, G.; Beukelman,
C. J.; Koster, A. S.; Postma, D. S.; Nijkamp, F. P. Br. J. Pharmacol. 2000,
130, 932.
(21) Bunting, J. R.; Phan, T. V.; Kamali, E.; Dowben, R. M. Biophys.
J. 1989, 56, 979.
’ ACKNOWLEDGMENT
This work was supported by NSFC (20833008) and NKBRSF
(2007CB815202).
11033
dx.doi.org/10.1021/ja202582x |J. Am. Chem. Soc. 2011, 133, 11030–11033