LETTER
Three-Component Synthesis of 2-Nitroamines
2599
(c) Dömling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39,
3168.
Table 2 Preparation of Various Substituted 2-Nitroamines 5
R2
NH2
(2) von Wangelin, A. J.; Neumann, H.; Gördes, D.; Klaus, S.;
Strübing, D.; Beller, M. Chem. Eur. J. 2003, 9, 4286.
(3) (a) Henderson, R. K.; Jimènez-González, C.; Constable, D.
J. C.; Alston, S. R.; Inglis, G. G. A.; Fisher, G.; Sherwood,
J.; Binksa, S. P.; Curzons, A. D. Green Chem. 2011, 13, 854.
(b) Strauss, C. R. Aust. J. Chem. 1999, 52, 83.
R3
20% H2O–MeOH
R1CHO +
1a–f
+
NO2
4a–d
HN
R1
60 °C, 5 h
R4
NO2
R4
R2
R3
2a,b
(4) (a) Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. J. Org. Chem.
1999, 64, 1033. (b) Sartori, G.; Bigi, F.; Maggi, R.;
Mazzacani, A.; Oppici, G. Eur. J. Org. Chem. 2001, 2513.
(c) Maggi, R.; Bigi, F.; Carloni, S.; Mazzacani, A.; Sartori,
G. Green Chem. 2001, 3, 173. (d) Soldi, L.; Ferstl, W.;
Loebbecke, S.; Maggi, R.; Malmassari, C.; Sartori, G.;
Yadab, S. J. Catal. 2008, 258, 289.
5
Entry R1
R2
R3
R4
Product Yield Selectivity
(%) (%)
1
2
Ph
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
5aaa
5baa
5caa
5daa
5eaa
5aba
5faa
5aab
5aac
87
88
87
78
83
90
96
97
98
97
98
97
4-ClC6H4
3-ClC6H4
H
(5) Ballini, R.; Barboni, L.; Fringuelli, F.; Palmieri, A.; Pizzo,
F.; Vaccaro, L. Green Chem. 2007, 9, 823.
3
H
(6) (a) Baer, H. H.; Urbas, L. In The Chemistry of the Nitro and
Nitroso Groups; Patai, S., Ed.; Interscience: New York,
1970, Part 2 117. (b) Nishiwaki, N.; Knudsen, K. R.;
Gothelf, K. V.; Jørgensen, K. A. Angew. Chem. Int. Ed.
2001, 40, 2992. (c) Qian, C.; Gao, F.; Chen, R. Tetrahedron
Lett. 2001, 42, 4673. (d) Singh, A.; Yoder, R. A.; Shen, B.;
Johnston, J. N. J. Am. Chem. Soc. 2007, 129, 3466.
(e) Noble, A.; Anderson, J. C. Chem. Rev. 2013, 113, 2887.
(7) (a) Stacy, G. W.; Morath, R. J. J. Am. Chem. Soc. 1952, 74,
3885. (b) Adams, H.; Anderson, J. C.; Peace, S.; Pennell, A.
M. K. J. Org. Chem. 1998, 63, 9932.
(8) Anderson, J. C.; Peace, S.; Pih, S. Synlett 2000, 850.
(9) Kundu, D.; Debnath, R. K.; Majee, A.; Hajra, A.
Tetrahedron Lett. 2009, 50, 6998.
(10) Marqués-López, E.; Merino, P.; Tejero, T.; Herrera, R. P.
Eur. J. Org. Chem. 2009, 2401.
4
4-O2NC6H4
H
5
4-MeOC6H4
H
6
Ph
Et
OMe
H
H
7
H
64a 91
43b 96
21b 97
trace –
8
Ph
Ph
Ph
H
Me
Et
9
H
10
H
Me Me 5aad
a Reaction carried out for 16 h.
b Sum of diastereoisomers.
(11) Tanaka, K.; Shiraishi, R. Green Chem. 2000, 2, 272.
(12) Manabe, K.; Iimura, S.; Sun, X.-M.; Kobayashi, S. J. Am.
Chem. Soc. 2002, 124, 11971.
(13) (a) Klijn, J. E.; Engberts, J. B. F. N. Nature 2005, 435, 746.
(b) Narayan, S.; Muldoon, J.; Finn, M. G.; Fokin, V. V.;
Kolb, H. C.; Sharpless, K. B. Angew. Chem. Int. Ed. 2005,
44, 3275.
(14) (a) Grieco, P. A.; Yoshida, K.; Garner, P. J. Org. Chem.
1983, 48, 3137. (b) Breslow, R.; Maitra, U. Tetrahedron
Lett. 1984, 25, 1239.
(15) (a) Li, C.-J. Chem. Rev. 1999, 93, 2023. (b) Li, C.-J.; Chen,
L. Chem. Soc. Rev. 2006, 35, 68. (c) Lubineau, A.; Augé, J.;
Queneau, Y. Synthesis 1994, 741. (d) Bonollo, S.; Lanari,
D.; Vaccaro, L. Eur. J. Org. Chem. 2011, 2587.
optimum yield and selectivity are obtained by using a
20% water–methanol mixture as a result of a synergistic
combination of the solubility effect and optimal acid–base
properties.
In a typical experiment, a solution of the appropriate alde-
hyde 1 (1 mmol), amine 2 (1 mmol), and nitroalkane 4 (5
mmol) in 20% H2O–MeOH (1 mL) was heated in a closed
reactor at 60 °C with stirring for five hours. The mixture
was cooled to room temperature, water (5 mL) was added,
and the mixture was extracted with ethyl acetate (2 × 5
mL). The combined extracts were dried (Na2SO4), fil-
tered, and concentrated by distillation. The 2-nitroamines
523 was isolated by column chromatography (silica gel,
hexane–ethyl acetate).
(16) Lindström, U. M.; Andersson, F. Angew. Chem. Int. Ed.
2006, 45, 548; and references cited therein.
(17) Jung, Y.; Marcus, R. A. J. Am. Chem. Soc. 2007, 129, 5492.
(18) Breslow, R. Acc. Chem. Res. 1991, 24, 159.
(19) A method for synthesizing imines from amines and
aldehydes in aqueous suspension has been previously
reported; see ref. 11. However, this solvent-free approach
gave a poor yield (~20%) of the model product 5aaa when
applied to the present three-component reaction described in
Scheme 1.
(20) (a) Dickerson, T. J.; Janda, K. D. J. Am. Chem. Soc. 2002,
124, 3220. (b) Hayashi, Y. Angew. Chem. Int. Ed. 2006, 45,
8103. (c) Brogan, A. P.; Dickerson, T. J.; Janda, K. D.
Angew. Chem. Int. Ed. 2006, 45, 8100. (d) Huang, J.; Zhang,
X.; Armstrong, D. W. Angew. Chem. Int. Ed. 2007, 46, 9073.
(21) PhCHO (1a; 1 mmol) and PhNH2 (2a; 1 mmol) were stirred
in H2O (5 mL) or 1 M aq LiCl (5 mL) at 60 °C for 10 min to
give imine 3aa in 75 and 78% yield, respectively. In a
second experiment, PhCHO (1a; 1 mmol), PhNH2 (2a; 1
mmol), and MeNO2 (4a; 10 mmol) were stirred in H2O (5
Acknowledgment
This work was supported by the Ministero dell’Università e della
Ricerca (MIUR), Italy, the University of Parma (National Project
Sintesi organiche ecosostenibili mediate da nuovi sistemi catalitici)
and the University of Perugia (financing programmes PRIN 2008
and FIRB-Futuro in Ricerca). The Centro Interdipartimentale Misu-
re (CIM) at the Parma University is acknowledged for the use of
NMR instruments.
References
(1) (a) Ugi, I. Pure Appl. Chem. 2001, 73, 187. (b) Ugi, I.; Heck,
S. Comb. Chem. High Throughput Screening 2001, 4, 1.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 2596–2600