Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
3.
T. Rasmusson, L. J. P. Martyn, G. Chen, A. Lough, M. Oh
and A. K. Yudin, Angew. Chem. Int.DEOdI.:,1200.10083,94/C79,C7C000992-16A
7012.
4.
5.
M. E. Phelps, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 9226-
9233.
T. Furuya, A. S. Kamlet and T. Ritter, Nature, 2011, 473,
470-477.
E. Saxon and C. R. Bertozzi, Science, 2000, 287, 2007.
I. Mohammed, I. R. Kummetha, G. Singh, N. Sharova, G.
Lichinchi, J. Dang, M. Stevenson and T. M. Rana, J. Med.
Chem., 2016, 59, 7677-7682.
H.-N. Shin, S. H. Seo, H. Choo, G. Kuem, K. I. Choi and G.
Nam, Bioorg. Med. Chem. Lett., 2013, 23, 1193-1196.
B. T. Worrell, J. E. Hein and V. V. Fokin, Angew. Chem. Int.
Ed., 2012, 51, 11791-11794.
D. Wang, W. Sun and T. Chu, Eur. J. Org. Chem., 2015,
2015, 4114-4118.
J. E. Hein, J. C. Tripp, L. B. Krasnova, K. B. Sharpless and V.
V. Fokin, Angew. Chem. Int. Ed., 2009, 48, 8018-8021.
J. S. Oakdale, R. K. Sit and V. V. Fokin, Eur. J. Org. Chem.,
2014, 20, 11101-11110.
E. Rasolofonjatovo, S. Theeramunkong, A. Bouriaud, S.
Kolodych, M. Chaumontet and F. Taran, Org. Lett., 2013,
15, 4698-4701.
H. G. Viehe, R. Merényi, J. F. M. Oth and P. Valange,
Angew. Chem. Int. Ed., 1964, 3, 746-746.
Z.-K. Yao and Z.-X. Yu, J. Am. Chem. Soc., 2011, 133,
10864-10877.
T. Okano, K. Ito, T. Ueda and H. Muramatsu, J. Fluorine
Chem., 1986, 32, 377-388.
T. Liang, C. N. Neumann and T. Ritter, Angew. Chem. Int.
Ed., 2013, 52, 8214-8264.
A. J. Salmon, M. L. Williams, Q. K. Wu, J. Morizzi, D. Gregg,
S. A. Charman, D. Vullo, C. T. Supuran and S.-A. Poulsen, J.
Med. Chem., 2012, 55, 5506-5517.
N. S. Zefirov, N. K. Chapovskaya and V. V. Kolesnikov, J.
Chem. Soc. D, 1971, DOI: 10.1039/C29710001001, 1001-
1002.
V. A. Motornov, A. A. Tabolin, R. A. Novikov, Y. V.
Nelyubina, S. L. Ioffe, I. V. Smolyar and V. G. Nenajdenko,
Eur. J. Org. Chem., 2017, 2017, 6851-6860.
X.-J. Quan, Z.-H. Ren, Y.-Y. Wang and Z.-H. Guan, Org.
Lett., 2014, 16, 5728-5731.
Figure 3. A plausible mechanism.
unoccupied molecular orbital (LUMO) and making the β-carbon
most electrophilic.22, 23 Without TFA, a mixture of 1,5- and 1,4-
regioisomers are obtained in a 5:2 ratio, as determined by 19F
NMR. The 1,3-dipolar organic azide attacks the partially
positively charged β-carbon of the α-fluoronitroalkene to form
the triazoline intermediate 3-int—a concomitant elimination of
HNO2 results in the regioselective formation of the desired 4-
6.
7.
8.
9.
fluoro-1,5-disubstituted-1,2,3-triazoles product
to probe the triazoline intermediate 3-int via 19F NMR in
deuterated-toluene at 90 C was unsuccessful—this suggests
3. An attempt
10.
11.
12.
13.
°
that the transient intermediate rapidly eliminates HNO2 to form
the triazole product.
In connection with our ongoing drug discovery efforts, we used
principal component analysis to assess the chemical space and
physicochemical properties of our fluorotriazole library. These
analyses show that the fluorinated triazoles occupy a slight to
near-complete overlapping chemical space as the reference set
of commercial drugs and pharmaceutical agents and have a
distinct set of physicochemical properties. More details are
included in the supporting information.
14.
15.
16.
17.
18.
In conclusion, we have shown that the
could be effectively used as synthetic surrogates of
α-fluoronitroalkenes
α-
fluoroalkynes in a regioselective [3 + 2] cycloaddition chemistry
with organic azides. The 1,5-disubstituted-4-fluorotriazoles are
conspicuously absent in the literature due to the lack of
methods for their preparation. In this report, we describe the
very first regioselective method to access 4-fluoro-1,5-
disubstituted-1,2,3-triazoles that will be widely applicable in
pharmaceutical, biomedical, agrichemical, and materials
sciences. A relatively broad-range of 4-fluoro-1,5-disubstituted-
1,2,3-triazoles were synthesized in 25–74% yields with high
19.
20.
regioselectivity. This work also demonstrates that
α-
21.
22.
23.
24.
25.
fluoronitroalkenes can serve as versatile fluorinated building
blocks to directly access a slew of fluorinated molecules via
various chemical transformations. Further studies to explore
the cycloaddition reactions with other dipoles are ongoing in
our laboratory. Screening of the fluorinated-triazoles against a
variety of targets related to human health and agrisciences is
currently being pursued.
J. Thomas, J. John, N. Parekh and W. Dehaen, Angew.
Chem. Int. Ed., 2014, 53, 10155-10159.
Y.-C. Wang, Y.-Y. Xie, H.-E. Qu, H.-S. Wang, Y.-M. Pan and
F.-P. Huang, J. Org. Chem., 2014, 79, 4463-4469.
D. Amantini, F. Fringuelli, O. Piermatti, F. Pizzo, E. Zunino
and L. Vaccaro, J. Org. Chem., 2005, 70, 6526-6529.
V. A. Motornov, V. M. Muzalevskiy, A. A. Tabolin, R. A.
Novikov, Y. V. Nelyubina, V. G. Nenajdenko and S. L. Ioffe,
J. Org. Chem., 2017, 82, 5274-5284.
V. A. Motornov, A. A. Tabolin, Y. V. Nelyubina, V. G.
Nenajdenko and S. L. Ioffe, Org. Biomol. Chem., 2019, 17,
1442-1454.
Conflicts of interest
There are no conflicts to declare.
26.
27.
28.
29.
R. Jannapu Reddy, M. Waheed, T. Karthik and A. Shankar,
New J. Chem., 2018, 42, 980-987.
T. Arai, H. Ogawa, A. Awata, M. Sato, M. Watabe and M.
Yamanaka, Angew. Chem. Int. Ed., 2015, 54, 1595-1599.
R. Jasiński, J. Socha and A. Barański, Chem. Heterocycl.
Compd., 2013, 49, 1055-1060.
References
1.
K. Müller, C. Faeh and F. Diederich, Science, 2007, 317,
1881-1886.
2.
E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly and N.
A. Meanwell, J. Med. Chem., 2015, 58, 8315-8359.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins