Organic Letters
Letter
collapses into stabilized zwitterionic intermediate I or J, which
also leads to the formation of F by intramolecular nucleophilic
addition. In the NMR studies, cyclopropane H was not observed
and compound F was detected as a mixture of diastereoisomers
(see the Supporting Information for more details). However,
since we can isolate compound 6 in 40% yield (eq 1),
cyclopropane H should be one of the key intermediates in this
reaction. We believe the reason we can not detect H is that this
donor−acceptor cyclopropane is not stable under the reaction
conditions, compound F is obtained by rearrangement and
compound 6 is formed via reaction with water. Thus, both of
these two pathways are possible.
Moreover, since the triazole and the ketene silyl acetal deliver
each of the two substituents of the products, this strategy offers
much synthetic flexibility in comparison with the traditional
methods.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, characterization data, and NMR
spectra for new compounds. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
Notably, the corresponding γ-lactam 7 could be easily
obtained by hydrogenation of compound 1aa with 10% Pd/C
under 6 atm of H2 (eq 2). Suzuki coupling of 1cn and PhB(OH)2
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was generously supported by the National Natural
Science Foundation of China (21002091, 21372204) and
Zhejiang Sci-Tech University 521 project.
REFERENCES
■
(1) (a) Casiraghi, G.; Rassu, G. Synthesis 1995, 607. (b) Baussanne, I.;
Travers, C.; Royer, J. Tetrahedron: Asymmetry 1998, 9, 797. (c) Verniest,
G.; De Kimpe, N. Synlett 2003, 2013. (d) Tonogaki, K.; Itami, K.;
Yoshida, J.-I. J. Am. Chem. Soc. 2006, 128, 1464.
afforded compound 8 in 75% yield (eq 3). Finally, the
transformation was used in the synthesis of a key intermediate
(compound 9, Scheme 3) of bilirubin analogue. Bilirubin is a bile
(2) (a) Schneider, H. H.; Yamaguchi, M.; Andrews, J. S.; Stephens, D.
N. Pharmacol. Biochem. Behav. 1995, 50, 211. (b) Gurjar, M. K.; Joshi, R.
A.; Chaudhuri, S. R.; Joshi, S. V.; Barde, A. R. B.; Gediya, L. K.; Ranade,
P. V.; Kadam, S. M.; Naik, S. J. Tetrahedron Lett. 2003, 44, 4853.
(c) Boiadjiev, S. E.; Woydziak, Z. R.; McDonagh, A. F.; Lightner, T. A.
Tetrahedron 2006, 62, 7043. (d) Feng, Z.; Chu, F.; Guo, Z.; Sun, P.
Bioorg. Med. Chem. Lett. 2009, 19, 2270.
Scheme 3. Synthesis of 3-Methyl-4-phenyl-1H-pyrrol-2(5H)-
one
(3) (a) Link, J. T.; Raghavan, S.; Gallant, M.; Danishefsky, S. J.; Chou,
T. C.; Ballas, L. M. J. Am. Chem. Soc. 1996, 118, 2825. (b) Faul, M. M.;
Winneroski, L. L.; Krumrich, C. A. J. Org. Chem. 1998, 63, 6053.
(4) (a) Xie, M.; Lightner, D. A. Tetrahedron 1993, 49, 2185. (b) Chen,
Q.; Huggins, M. T.; Lightner, D. A.; Norona, W.; McDonagh, A. F. J. Am.
Chem. Soc. 1999, 121, 9253. (c) Coffin, A. R.; Roussell, M. A.; Tserlin, E.;
Pelkey, E. T. J. Org. Chem. 2006, 71, 6678. (d) Greger, J. G.; Yoon-
Miller, S. J. P.; Bechtold, N. R.; Flewelling, S. A.; MacDonald, J. P.;
Downey, C. R.; Cohen, E. A.; Pelkey, E. T. J. Org. Chem. 2011, 76, 8203.
(5) (a) Bishop, J. E.; Nagy, J. O.; O’Connell, J. F.; Rapoport, H. J. Am.
Chem. Soc. 1991, 113, 8024. (b) Murai, M.; Miki, K.; Ohe, K. J. Org.
Chem. 2008, 73, 9174.
(6) (a) Pal, M.; Swamy, N. K.; Hameed, P. S.; Padakanti, S.;
Yeleswarapu, K. R. Tetrahedron 2004, 60, 3987. (b) Rana, S.; Brown, M.;
Dutta, A.; Bhaumik, A.; Mukhopadhyay, C. Tetrahedron Lett. 2013, 54,
1371. (c) Qian, J.-L.; Yi, W.-B.; Cai, C. Tetrahedron Lett. 2013, 54, 7100.
(7) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int. Ed.
2007, 46, 4757.
(8) 1-Sulfonyl-1,2,3-triazoles are easily available by a Cu-catalyzed
alkyne−azide cycloaddition (CuAAC) reaction: (a) Yoo, E. J.; Ahlquist,
M.; Kim, S. H.; Bae, I.; Fokin, V. V.; Sharpless, K. B.; Chang, S. Angew.
Chem., Int. Ed. 2007, 46, 1730. (b) Raushel, J.; Fokin, V. V. Org. Lett.
2010, 12, 4952. (c) Liu, Y.; Wang, X.; Xu, J.; Zhang, Q.; Zhao, Y.; Hu, Y.
Tetrahedron 2011, 67, 6294.
(9) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V.
V. J. Am. Chem. Soc. 2008, 130, 14972.
(10) For reviews, see: (a) Chattopadhyay, B.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2012, 51, 862. (b) Gulevich, A. V.; Gevorgyan, V. Angew.
Chem., Int. Ed. 2013, 52, 1371.
pigment and a powerful antioxidant, and its aromatic congener is
bioactive too.15 In the literature, Barton−Zard reaction between
(p-toluenesulfonyl)methyl isocyanide and 2-nitro-1-phenylpro-
panol acetate led to the formation of 4-methyl-3-phenyl-2-(p-
toluenesulfonyl)pyrrole, which underwent bromination, hydrol-
ysis, and reduction to afford the key compound 9, and the overall
yield based on the isocyanide was 42%.15 Starting from
commercially available phenylacetylene, compound 9 can be
synthesized in 78% yield over three steps. In the presence of
KOH, 9 can react with pyrrole-2-carbaldehyde to afford
compound 10.
In summary, a novel and convenient method to synthesize 3,4-
disubstituted 3-pyrrolin-2-one using 1-sulfonyl 1,2,3-triazole and
ketene silyl acetal has been developed. As a new example to
demonstrate the synthetic potential of 1-sulfonyl 1,2,3-triazole as
α-imino carbene precursor, a broad range of functional groups
were well tolerated and the operating process is quite simple.
(11) (a) Chuprakov, S.; Kwok, S. W.; Zhang, L.; Lercher, L.; Folin, V.
V. J. Am. Chem. Soc. 2009, 131, 18034. (b) Grimster, N.; Zhang, L.;
C
dx.doi.org/10.1021/ol501514b | Org. Lett. XXXX, XXX, XXX−XXX