Organic Letters
Letter
Scheme 5. Aromatization via Non-6π-electrocyclization
REFERENCES
■
(1) For selective examples of transition-metal-catalyzed regioslective
reactions, see: (a) ElDouhaibi, A. S.; Lozanov, M.; Montgomery, J.
Tetrahedron 2006, 62, 11460. (b) Rubina, M.; Conley, M.; Gevorgyan,
V. J. Am. Chem. Soc. 2006, 128, 5818. (c) Hara, H.; Hirano, M.; Tanaka,
K. Org. Lett. 2008, 10, 2537. (d) Tsuji, H.; Yamagata, K.; Fujimoto, T.;
Nakamura, E. J. Am. Chem. Soc. 2008, 130, 7792. (e) Kuninobu, Y.;
Nishi, M.; Yasuda, S.; Takai, K. Org. Lett. 2008, 10, 3009. (f) Izawa, Y.;
Pun, D.; Stahl, S. S. Science 2011, 333, 209. (g) Matsuda, T.; Miura, N.
Org. Biomol. Chem. 2013, 11, 3424.
(2) For selective examples of non-transition-metal-mediated reactions,
see: (a) Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Tetrahedron 2006,
62, 3128. (b) Crone, B.; Krisch, S. F.; Umland, K.-D. Angew. Chem. Int.
Ed. 2010, 49, 4661. (c) Yang, F.; Qiu, Y.-F.; Ji, K.-G.; Niu, Y.-N.; Ali, S.;
Liang, Y.-M. J. Org. Chem. 2012, 77, 9029. (d) Diallo, A.; Zhao, Y.-L.;
Wang, H.; Li, S.-S.; Ren, C.-Q.; Liu, Q. Org. Lett. 2012, 14, 5776.
(3) Kinoshita, H.; Ishikawa, T.; Miura, K. Org. Lett. 2011, 13, 6192.
(4) Kinoshita, H.; Takahashi, H.; Miura, K. Org. Lett. 2013, 15, 2962.
(5) For a related work, see: Tokan, W. M.; Meyer, F. E.; Schweizer, S.;
Parsons, P. J.; de Meijere, A. Eur. J. Org. Chem. 2008, 6152.
(6) DIBAL-H-promoted homocyclotrimerizations of alkynes to
polysubstituted benzenes were reported in the 1960s. Eisch and co-
workers pointed out the possibility that the cyclotrimerization involves
6π-electrocyclization of a trienylaluminum intermediate. (a) Wilke, G.;
of DIBAL-H (1.2 equiv) did not promote the cyclization of 1s at
all, and an almost quantitative amount of 1s was recovered. The
reaction of 1s with DIBAL-H (2.5 equiv) at 50 °C for 30 min
gave triene 5 in 68% with 32% recovery of 1s (Scheme 5, eq 2).
When the reaction mixture was subjected to 1H and 13C NMR
analyses before quenching with water, the NMR signals of
protons and carbons α to the ethereal oxygen appeared in lower
magnetic fields than those for 5. These observations indicate that
DIBAL-H is used not only for hydroalumination of the alkyne
part but also for coordination to the ethereal oxygen.
Considering the electrophilic activation of the allylic carbon
bearing a methoxy group, the formation of 4 can be rationalized
by intramolecular nucleophilic substitution of trienylaluminum16
intermediate G and subsequent aromatization via 1,3-hydrogen
shift.
Muller, H. Justus Liebigs Ann. Chem. 1960, 629, 222. (b) Eisch, J. J.;
̈
Kaska, W. C. J. Am. Chem. Soc. 1966, 88, 2213. (c) Eisch, J. J.; Amtmann,
R.; Foxton, M. W. J. Organomet. Chem. 1969, 16, 55.
(7) (a) Eisch, J. J.; Foxton, M. W. J. Org. Chem. 1971, 36, 3520.
(b) Akiyama, K.; Gao, F.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2010,
49, 419.
(8) The 1,3-dien-5-yne units were constructed by the reported
methods. (a) Ogata, K.; Murayama, H.; Sugasawa, J.; Suzuki, N.;
Fukazawa, S. J. Am. Chem. Soc. 2009, 131, 3176. (b) Ogata, K.; Sugasawa,
J.; Fukazawa, S. Angew. Chem., Int. Ed. 2009, 48, 6078. (c) Ogata, K.;
Atsuumi, Y.; Fukuzawa, S. Org. Lett. 2011, 13, 122. (d) Suginome, M.;
Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc. 2006, 128, 14438. See
the Supporting Information for details.
(9) (a) For a recent review, see: Zimmermann, G. Eur. J. Org. Chem.
2001, 457. (b) Litovitz, A. E.; Carpenter, B. K.; Hopf, H. Org. Lett. 2005,
7, 507.
In summary, we developed the regiocontrolled synthesis of
polysubstituted benzenes from silylated 1,3-dien-5-ynes by using
DIBAL-H. Although this method for benzene construction is
rather limited in substrate scope, it enables the synthesis of
unsymetrically polysubstituted benzenes hardly obtainable by
the known methods. The introduction of a trimethylslilyl group
on the benzene ring serves to broaden the range of accessible
substituted benzenes on the basis of synthetic utility of
arylsilanes. In addition, the present study revealed some
interesting reactivities of organoalunimum reagents, which are
valuable for further development of aluminum-mediated
synthetic methods. Further study on the reaction mechanism is
underway.
(10) The structures of 2p and 2q were determined by comparing the
1H NMR data with those of 2-(trimethylsilyl)biphenyl and 3-
(trimethylsilyl)biphenyl reported by Kaufmann; see: Kaufmann, D.
Chem. Ber. 1987, 120, 901.
(11) For theoretical studies on 6π-electrocyclization, see: (a) Patel, A.;
Barcan, G. A.; Kwon, O.; Houk, K. N. J. Am. Chem. Soc. 2013, 135, 4878.
(b) Yamanaka, M.; Morishima, M.; Shibata, Y.; Higashibayashi, S.;
Sakurai, H. Organometallics 2014, 33, 3060.
(12) The cyclization of substrates bearing slightly different substituents
as R1 and R2 should be conducted to clarify the reaction mechanism.
However, we have not yet succeeded in regiocontrolled synthesis of such
substrates in spite of all our efforts.
(13) Hafelinger, G.; Beyer, M. Liebigs Ann. Chem. 1980, 12, 2012.
̈
(14) (a) Pfohl, W. Liebigs Ann. Chem. 1960, 629, 207. (b) Eisch, J. J.;
Kaska, W. C. J. Am. Chem. Soc. 1963, 85, 2165.
ASSOCIATED CONTENT
* Supporting Information
■
(15) The structure of 4s was confirmed by leading 4s to 1-benzyl-2,3-
diethyl-5-(4′-phenyl)phenylbenzene (4s′) and analyzing its crystal
structure (CCDC 983140).
(16) For intermolecular nucleophilic substitution of vinylaluminum
speices, see: Zweifel, G.; Miller, J. A. Org. React. 1984, 32, 375.
S
Experimental procedures, characterization data, and crystallo-
graphic data for 2e (CCDC 983139) and 4s′ (CCDC 983140)
(CIF). This material is available free of charge via Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
4765
dx.doi.org/10.1021/ol5022096 | Org. Lett. 2014, 16, 4762−4765