Angewandte
Chemie
Scheme 8. Rearrangement of 4-(o-styryl)-cyclobutenone 48 to
benzobicyclo[4.2.0]octenone 49.
The results are thus consistent with rearrangement occurring
by an initial electrocyclic ring opening of the cyclobutenone,
42, to an unsaturated ketene, 43, which in turn undergoes a
[2+2] cycloaddition to benzobicyclo[4.1.1]octenone 45. A
vinylcyclobutane rearrangement via biradical 46 completes
the sequence with the dynamics of rotation between 46B and
46A dictating the stereochemical outcome (Scheme 7).[10]
In conclusion, we have shown that a host of carbocyclic
ring systems can be prepared by the thermal rearrangement of
cyclobutenones. Of particular note is our finding that the
course of vinylcyclobutenone rearrangements is dictated by
the nature of substituents on the vinyl appendage. When the
distal carbon atom carries a powerful electron-donating
group, electrocyclic ring opening of the cyclobutenone is
followed by a carbonyl-ene reaction, which leads to a
cyclopentendione after oxidation (Scheme 2 and 3). In other
cases the unsaturated ketene intermediate undergoes an
electrocyclization reaction, which leads to a cyclohexadie-
none, for example, 5. The nature of the saturated carbon atom
within that cyclohexadienone then dictates whether it collap-
ses with elimination to a quinone (Scheme 5), or tautomerizes
Scheme 6. Rearrangementsof ( Z)-4-(o-styryl)-cyclobutenones to
benzobicyclo[3.2.1]octenones.
benzobicyclo[3.2.1]octenones as single diastereoisomers
(Scheme 6), the isomeric (E)-4-(o-styryl)cyclobutenones led
to diastereomeric mixtures (See Supporting Information).
to
a hydroquinone (Scheme 1) or a cyclohexenedione
(Scheme 4). From a synthetic perspective, the high yields
and lack of reagents add to the appeal of the transformations
described herein.
Received: August 30, 2006
Published online: December 5, 2006
Keywords: cyclization · domino reactions· rearrangement ·
.
spiro compounds · thermochemistry
[1] S. T. Perri, H. J. Dyke, H. W. Moore, J. Org. Chem. 1989, 54,
2032 –2034; A. Enhsen, K. Karabelas, J. M. Heerding, H. W.
Moore, J. Org. Chem. 1990, 55, 1177 –1185; J. M. Heerding,
H. W. Moore, J. Org. Chem. 1991, 56, 4048 –4050; M. P. Winters,
M. Stranberg, H. W. Moore, J. Org. Chem. 1994, 59, 7572 –7574;
D. C. Harrowven, D. D. Pascoe, D. Demurtas, H. O. Bourne,
Angew. Chem. 2005, 117, 1247 –1248; Angew. Chem. Int. Ed.
2005, 44, 1221 –1222.
[2] L. Sun, L. S. Liebeskind, J. Org. Chem. 1995, 60, 8194 –8203; F.
Liu, L. S. Liebeskind, J. Org. Chem. 1998, 63, 2835 –2844; J. E.
Ezcurra, K. Karabelas, H. W. Moore, Tetrahedron 2005, 61, 275 –
286.
[3] For a review of the early literature, see H. W. Moore, B. R. Yerxa
in Advances in Strain in Organic Chemistry, Vol. 4 (Ed.: B.
Halton), Jai Press, Grenwich, CT, 1995, pp. 81 –162.
Scheme 7. Proposed mechanism for the thermal rearrangement of 4-
(o-styryl)-cyclobutenones.
[4] T. J. Onofrey, D. Gomez, M. Winters, H. W. Moore, J. Org.
Chem. 1997, 62, 5658 –5659; R. Tiedemann, M. J. Heileman,
Angew. Chem. Int. Ed. 2007, 46, 425 –428
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
427