8388
R. Gawin et al. / Bioorg. Med. Chem. 16 (2008) 8379–8389
Imbach, J.-L. Nucleosides Nucleotides 1995, 14, 1795; (h) Sharma, M.; Li, Y. X.;
Ledvina, M.; Bobek, M. Nucleosides Nucleotides 1995, 14, 1831; (i) Urjasz, W.;
Celewicz, L.; Golankiewicz, K. Nucleosides Nucleotides 1996, 15, 1189; (j) Martin,
J. A.; Thomas, G. J.; Merret, J. H.; Lambert, R. W.; Bushnel, D. J.; Dundson, S. J.;
Freeman, A. C.; Hopkins, R. A.; Johns, I. R.; Keech, E.; Simmonite, H.; Wong-Kai-
In, P.; Holland, M. Antiviral Chem. Chemother. 1998, 1, 1; (k) Scherman, M. S.;
Winans, K. A.; Stern, R. J.; Jones, V.; Bertozzi, C. R.; McNeil, M. R. Antimicrob.
Agents Chemother. 2003, 47, 378; (l) Vanada, J.; Bennet, E.; Wilson, D.; Bishoff,
H.; Barry, C.; Aldrich, C. Org. Lett. 2006, 8, 4707.
5.9. General procedure for the ammonolysis of 5d or 6d
A mixture of 5d or 6d, concentrated ammonium hydroxide, and
methanol in the ratio of 0.5 mmol/10 mL/10 mL, respectively, was
heated in a sealed tube at 70 °C for 1 day. The volatiles were evap-
orated to dryness under reduced pressure. The residue was purified
by column chromatography (chloroform/methanol, 95:5, v/v) to
give 14a or 14b, respectively.
5. For 30-deoxy-30-sulfonamidofuranosyl nucleosides, see: (a) Van Calenbergh, S.;
Van Den Eeckhout, E.; Herdewijn, P.; De Bruyn, A.; Verlinde, C.; Hol, W.;
Callens, M.; Van Aerschot, A.; Rozenski, J. Helv. Chim. Acta 1994, 77, 631; (b)
Yamana, K.; Ohashi, Y.; Nunota, K.; Nakano, H. Tetrahedron 1997, 53, 4265.
6. For N-(p-toluenesulfonyl)pyrrolidines, see: (a) Nair, V.; Walsh, R. H. J. Org.
Chem. 1974, 39, 3045; (b) Ng, K. E.; Orgel, L. E. J. Med. Chem. 1989, 32, 1754; (c)
Pickering, L.; Malhi, B. S.; Coe, P. L.; Walker, R. T. Nucleosides Nucleotides 1994,
13, 1493; (d) Westwood, N. B.; Walker, R. T. Tetrahedron 1998, 54, 13391; (e)
Negwer, M.; Scharmow, H.-G. In Organic-Chemical Drugs and their Synonyms;
Wiley-VCH Verlag GmbH, 2001, p 1454.
5.9.1. 1-[N-(4-Acetamidobenzenesulfonyl)-N-(2-hydroxyethyl)
aminomethyl]-5-methyl-1H,3H-pyrimidin-2,4-dione (14a)
According to the general procedure, 14a was obtained from 5d
(136 mg, 0.28 mmol). Chromatographic purification afforded 14a
(105 mg, 94%) as a white solid; mp > 219 °C (dec). dH (200 MHz,
DMSO-d6) 1.73 (br s, 3H), 2.10 (s, 3H), 3.17–3.72 (m, 4H), 4.82
(br s, 1H, OH), 5.13 (s, 2H), 7.41 (br s, 1H), 7.69–7.85 (m, 5H),
10.80 (br s, 1H, NH). dC (50 MHz, DMSO-d6) 12.06, 24.18, 50.72,
59.70, 60.53, 108.80, 118.63, 123.94, 132.89, 140.26, 143.68,
151.15, 164.06, 169.30. mmax (KBr) 3406s (OH), 3312m (NH),
1715s (C@O), 1698s (C@O), 1664s (C@O), 1594m, 1537m, 1336s
(SO2), 1155s (SO2). HRMS m/z calcd for C16H20N4O6NaS (M+Na)+
419.0996, found 419.0998.
ˇ
ˇ
7. Krizmanic´, I.; Višnjevac, A.; Luic´, M.; Glavaš-Obrovac, L.; Zinic´, M.; Zinic´, B.
Tetrahedron 2003, 59, 4947. and references cited therein.
8. (a) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Curr. Med. Chem.
2003, 10, 925; (b) Supuran, C. T.; Casini, A.; Scozzafava, A. Med. Res. Rev. 2003,
23, 535; (c) Supuran, C. T.; Innocenti, A.; Mastrolorenzo, A.; Scozzafava, A. Mini-
Rev. Med. Chem. 2004, 4, 189.
´
9. (a) Koszytkowska-Stawinska, M.; Sas, W. Tetrahedron Lett. 2004, 45, 5437; (b)
Koszytkowska-Stawin´ ska, M.; Sas, W.; De Clercq, E. Tetrahedron 2006, 62,
10325; (c) Koszytkowska-Stawin´ ska, M.; Kaleta, K.; Sas, W.; De Clercq, E.
´
Nucleosides Nucleotides Nucl. 2007, 26, 51; (d) Koszytkowska-Stawinska, M.;
Kołaczkowska, E.; Adamkiewicz, E.; De Clercq, E. Tetrahedron 2007, 63, 10587.
10. (a) Pitman, I. H. Med. Res. Rev. 1981, 1, 189; (b) Gao, H.; Mitra, A. Synthesis 2000,
329; (c) Anastasi, C.; Quelever, G.; Burlet, S.; Garino, C.; Souard, F.; Kraus, J.-L.
Curr. Med. Chem. 2003, 10, 1825; (d) Calogeropoulou, T.; Detsi, A.; Lekkas, E.;
Koufaki, M. Curr. Top. Med. Chem. 2003, 3, 1467; (e) De Clercq, E.; Field, H. J. Br. J.
Pharmacol. 2006, 147, 1.
5.9.2. 1-[N-(4-Acetamidobenzenesulfonyl)-N-(2-hydroxyethyl)
aminomethyl]-1H,3H-pyrimidin-2,4-dione (14b)
According to the general procedure, 14b was obtained from
6d (81 mg, 0.18 mmol). Chromatographic purification afforded
11. Vorbrüggen, H.; Ruh-Pohlenz, C. In Handbook of Nucleoside Synthesis; John
Wiley: New York, 2001; pp 29-33.
14b (69 mg, 85%) as
a white solid; mp > 212 °C (dec). dH
(200 MHz, DMSO-d6) 2.10 (s, 3H), 3.21–3.59 (m, 4H), 4.83 (br
12. 4-Acetamido-N-(2-pivaloyloxyethyl)-N-(acetamidomethyl)benzenesulfonamide:
(36% yield); dH (200 MHz, CDCl3) 1.17 (s, 9H), 1.95 (s, 3H), 2.20 (s, 3H), 3.52 (t,
3JH–H 5.6, 2H), 4.19 (t, 3JH–H 5.6, 2H), 4.72 (d, 3JH–H 6.2, 2H), 6.55 (t, 3JH–H 6.2, 1H,
NH), 7.62–7.68 (m, 2H), 7.70–7.74 (m, 2H), 8.12 (br s, 1H, NH). dC (50 MHz,
CDCl3) 23.26, 24.77, 38.86, 46.65, 53.26, 62.20, 119.67, 128.30, 134.40, 142.64,
169.13, 170.98, 178.66. HRMS m/z calcd for C18H27N3O6NaS (M+Na)+ 436.1513,
found 436.1528.
13. Such competition of N-monosilylated or free acetamide with persilylated
nucleobases for sugar cation upon the nucleosides synthesis has been
reported (a) Cristalli, G.; Volpini, R.; Vittorio, S.; Camaioni, E.; Rafaiani, G.;
Potenza, S.; Vita, A. Nucleosides Nucleotides 1996, 15, 1567; (b) Ochoa, C.;
Provensio, R.; Jimeno, M. L.; Balzarini, J.; De Clercq, E. Nucleosides Nucleotides
1998, 17, 901.
3
3
s, 1H, OH), 5.16 (s, 2H), 5.62 (d, JH–H 8.0, 1H), 7.65 (d, JH–H
8.0, 1H), 7.70–7.75 (m, 2H), 7.81–7.85 (m, 2H), 8.44 (br s, 1H,
NH), 10.75 (br s, 1H, NH). dC (50 MHz, DMSO-d6) 24.05, 50.61,
59.53, 60.75, 101.21, 118.45, 127.75, 132.52, 143.46, 144.66,
150.94, 163.30, 169.04. mmax (KBr) 3394s (OH), 3327m (NH),
1718s (C@O), 1698s (C@O), 1671s (C@O), 1591s, 1522s, 1154s
(SO2), 1342s (SO2). HRMS m/z calcd for C15H18N4O6NaS
(M+Na)+ 405.0839, found 405.0859.
14. (a) Watanabe, K. A.; Beránek, J.; Friedman, H. A.; Fox, J. J. J. Org. Chem. 1965, 30,
2735; (b) Friedman, H. A.; Watanabe, K. A.; Fox, J. J. J. Org. Chem. 1967, 32, 3775;
(c) Matsuda, A.; Watanabe, K. A. Nucleosides Nucleotides 1996, 15, 205; (d) Ohta,
N.; Minamoto, K.; Yamamoto, T.; Koide, N.; Naoya, S.; Sakodo, R. Nucleosides
Nucleotides 1996, 15, 833; (e) Rozens, E.; Katkevica, D.; Bizdena, E.; Stroemberg,
R. J. Am. Chem. Soc. 2003, 125, 12125; (f) Glinski, R. P.; Sporn, M. B. Biochemistry
1972, 11, 405; (g) Liu, B.; Hu, L. Bioorg. Med. Chem. 2003, 11, 3889; (h) Baer, H.
H.; Bayer, M. Can. J. Chem. 1971, 49, 568.
15. For the reduction of nucleoside analogues with the nitro group in a nucleobase
moiety, see: (a) Bigge, C. F.; Kalaritis, P.; Deck, J. R.; Mertes, M. P. J. Am. Chem.
Soc. 1980, 102, 2033; (b) Dziwiszek, K.; Schinazi, R. F.; Chou, T.-C.; Su, T.-L.;
Dzik, J. Nucleosides Nucleotides 1994, 13, 77; (c) De Riccardis, F.; Bonala, R. R.;
Johnson, F. J. Am. Chem. Soc. 1999, 121, 10453; (d) Chakraborti, D.; Colis, L.;
Schneider, R.; Bau, A. Org. Lett. 2003, 5, 2861; (e) Takamura-Enya, T.; Enomoto,
S.; Wakabayashi, K. J. Org. Chem. 2006, 71, 5599.
Acknowledgments
The synthetic part of this work was financially supported by
Warsaw University of Technology. We thank Dr. Wojciech Sas,
Warsaw University of Technology, for his support, and fruitful
discussions. We thank Leentje Persoons, Frieda De Meyer and
Vicky Broeckx for excellent technical help, and the International
Consortium for Antivirals (ICAV) and Fonds voor Wet-
enschappelijk Onderzoek Vlaanderen for financial support (Pro-
ject No. G.0188.07).
References and notes
16. For reviews, see: (a) Johnstone, R. A. W.; Wilby, A. H. Chem. Rev. 1985, 85, 129;
(b) Rylander, P.N. In Hydrogenation Methods; Academic Press, 1985; pp 16-17,
104–107, and 163.
1. (a) De Clercq, E. J. Clin. Virol. 2004, 30, 115; (b) Galmarini, C. M.; Mackey, J. R.;
Dumontet, C. Lancet Oncol. 2002, 3, 415; (c) Opio, C. K.; Lee, W. M.; Kirkpatrick,
P. Nat. Rev. Drug Disc. 2005, 4, 535.
2. (a) Johnson, A. A.; Ray, A. S.; Hanes, J.; Suo, Z.; Colacino, J. M.; Anderson, K. S.;
Johnson, K. A. J. Biol. Chem. 2001, 276, 40847; (b) De Clercq, E. J. Antimicrob.
Chemother. 2003, 51, 1079; (c) Jeha, S.; Gandhi, V.; Chan, K. W.; McDonald, L.;
Ramirez, I.; Madden, R.; Rytting, M.; Brandt, M.; Keating, M.; Plunkett, W.;
Kantarjian, H. Blood 2004, 103, 784.
17. The 11a: 10a ratio was estimated from the 1H NMR spectrum of the mixture by
the comparison of the intensities of the signals corresponding to the H-6
3
3
proton of 10a [7.64 (d, JH–H 8.0 Hz)] and to the H-6 one of 11a [7.82 (d, JH–F
6.8 Hz)].
18. (a) Duschinsky, R.; Pleven, E. J. Am. Chem. Soc. 1957, 79, 4559; (b) Colla, L.;
Herdewijn, P.; De Clercq, E.; Balzarini, J.; Vanderhaeghe, H. Eur. J. Med. Chem.
Chim. Ther. 1985, 20, 295.
19. The reference antivirals displayed the following MCC values: (a) Vero cells:
3. Gumina, G.; Olgen, S.; Chu, C. K. In Antiviral Nucleosides: Chiral Synthesis and
Chemotherapy; Chu, C. K., Ed.; Elsevier B.V., 2003; pp 161–169.
brivudin, >250
brivudin, >250
>100 M; (c) HeLa cells: brivudin, >250
propyl)adenine [(S)-DHPA], >250 M; ribavirin, >250
oseltamivir carboxylate, >100 M; ribavirin, 100 M; amantadin, >100
rimantadin, >100 M.
20. The reference antivirals displayed the following CC50 values: (a) MDCK cells:
oseltamivir carboxylate, >100 M; ribavirin, >100 M; amantadin, >100 M;
rimantadin, >100 M; (b) CRFK cells: hippeastrum hybrid agglutinin (HHA),
>100 g/mL; urtica dioica agglutinin (UDA), >100 g/mL; ganciclovir, >100 M.
l
l
M; [(S)-DHPA], >250
M; ribavirin, >250
l
l
M; ribavirin, >250
M; acyclovir, >250
M; (S)-9-(2,3-dihydroxy-
M; (d) MDCK cells:
M;
l
M; (b) HEL cells:
4. For 50-deoxy-50-sulfonamidofuranosyl nucleosides, see: (a) Markham, A. F.;
Newton, C. R.; Porter, R. A.; Sim, I. S. Antiviral Res. 1982, 2, 319; (b) Cosstick, R.;
Jones, A. S.; Walker, R. T. Tetrahedron 1984, 40, 427; (c) Elliott, R. D.; Brockman,
R. W.; Montgomery, J. A. J. Med. Chem. 1986, 29, 1052; (d) Sim, I. S.; Picton, C.;
Cosstick, R.; Jones, A. S.; Walker, R. T.; Chamiec, A. J. Nucleosides Nucleotides
1988, 7, 129; (e) Martin, J. A.; Duncan, I. B.; Hall, M. J.; Wong-Kai-In, P.;
Lambert, R. W.; Thomas, G. J. Nucleosides Nucleotides 1989, 8, 753; (f) Homma,
H.; Watanabe, Y.; Abiru, T.; Murayama, T.; Nomura, Y.; Matsuda, A. J. Med.
Chem. 1992, 35, 2881; (g) Criton, M.; Dewyntert, G.; Aouf, N.; Montero, J.-L.;
lM; ganciclovir,
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l