18
J. Higgs et al. / Neuropharmacology 72 (2013) 9e19
Harbone, J.B., Williams, C., 2000. Advances in flavonoid research since 1992.
Phytochemistry 5, 481e505.
Havsteen, B.H., 2002. The biochemistry and medical significance of the flavonoids.
Pharmacol. Ther. 96, 67e202.
Ioja, E., Tourwé, D., Kertész, I., Tóth, G., Borsodi, A., Benyhe, S., 2007. Novel diaste-
reomeric opioid tetrapeptides exhibit differing pharmacological activity pro-
files. Brain Res. Bull. 74, 119e129.
Jäger, A.K., Lasse, S., 2011. Flavonoids and the CNS. Molecules 16, 1471e1485.
Jürgensen, S., Dalbó, S., Angers, P., Santos, A.R., Ribeiro-do-Valle, R.M., 2005.
Involvement of 5-HT2 receptors in the antinociceptive effect of Uncaria
tomentosa. Pharmacol. Biochem. Behav. 81 (3), 466e477.
Katavic, P.L., Navarro, H., Lamb, K., Prisinzano, T.E., 2007. Flavonoids as opioid re-
ceptor ligands: identification and preliminary structureeactivity relationships.
J. Nat. Prod. 70 (8), 1278e1282.
Kaur, R., Singh, D., Chopra, K., 2005. Participation of alpha-2 receptors in the anti-
nociceptive activity of quercetin. J. Med. Food 8 (4), 529e532.
Kieffer, B., Gavériaux-Ruff, C., Befort, K., Massotte, D., Becker, J., 2009. Brain opioid
receptor systems: molecular and functional aspects. Eur. Neuro-
psychopharmacol. 19, S1eS2.
derivatives. It was demonstrated that the flavone nucleus per se has
an inherent analgesic action; the C2eC3 double bond in the flavone
nucleus appears to be essential for the analgesic effect and sub-
stitution of different groups (hydroxyl or methoxyl) at different
positions in the flavone nucleus altered the analgesic potency of
flavone (Thirugnanasambantham et al., 1993). Moreover, the
flavonoid core was studied as a potential new scaffold for the
development of opioid receptor ligands and it was observed that
the stereochemistry of the C2 and C3 positions, and its substitution,
is important for antagonist activity and selectivity (Katavic et al.,
2007). Some dihydroxy flavones (5,30-, 7,30-, 20,30-, 20,40-, 3,30-,
5,6-, 3,7 and 6,30- dihydroxy flavones) with antinociceptive activity
have been already synthesized. These flavones produced dose
related antinociception through mechanisms that involve an
interaction with opioid and GABAergic systems (Vidyalakshmi
et al., 2010). In the present work we demonstrated that 3,3-
dibromoflavanone (31), despite having C2eC3 single bond in its
structure, presents antinociceptive activity.
Koster, R., Anderson, M., Beer, E.J., 1959. Acetic acid for analgesic screening. Fed.
Proc. 18, 412e418.
Kromer, W., 1988. Endogenous and exogenous opioids in the control of gastroin-
testinal motility and secretion. Pharmacol. Rev. 40 (2), 121e182.
Lakhlani, P.P., Macmillan, L.B., Guo, T.Z., McCool, B.A., Lovinger, D., Maze, M.,
Limbird, L.E., 1997. Substitution of a mutant a2a-adrenergic receptor via “hit
and run” gene targeting reveals the role of this subtype in sedative, analgesic,
and anesthetic-sparing responses in vivo. Proc. Natl. Acad. Sci. of U. S. A. 94,
9950e9955.
5. Conclusion
The results of the present study provided convincing evidence
that i.p. administration of 3,3-dibromoflavanone (31), at doses that
do not interfere with the motor performance and the gastrointes-
tinal transit, exerted clear dose dependent antinociception when
assessed in the chemical and thermal models of nociception in mice
Le Bars, D., Gozariu, M., Cadden, S.W., 2001. Animal models of nociception. Phar-
macol. Rev. 53 (4), 597e652.
Lister, R.G., 1987. The use of a plus maze to measure anxiety in the mouse. Psy-
chopharmacology (Berl) 92, 180e185.
Loscalzo, L.M., Wasowski, C., Paladini, A.C., Marder, M., 2008. Opioid receptors
are involved in the sedative and antinociceptive effects of hesperidin as
well as in its potentiation with benzodiazepines. Eur. J. Pharmacol. 580,
306e313.
and it seems that its action is related to the activation of the
opioid system.
m
Loscalzo, L.M., Yow, T.T., Wasowski, C., Chebib, M., Marder, M., 2011. Hesperidin
induces antinociceptive effect in mice and its aglicone, hesperetin, binds to m-
opioid receptor and inhibits GIRK1/2 currents. Pharmacol. Biochem. Behav. 99,
333e341.
It could be suggested that flavanone derivatives can afford
opioid ligands emerging as novel analgesics without motor side
effects.
Manara, L., Bianchi, G., Ferretti, P., Tavani, A., 1986. Inhibition of gastrointestinal
transit by morphine in rats results primarily from direct drug action on gut
opioid sites. J. Pharmacol. Exp. Ther. 237 (3), 945e949.
Marder, M., Paladini, A.C., 2002. GABAA-receptor ligands of flavonoid structure. Curr.
Top. Med. Chem. 2, 853e867.
Acknowledgments
Marder, M., Viola, H., Wasowski, C., Fernández, S.P., Medina, J.H., Paladini, A.C., 2003.
6-Methylapigenin and hesperidin: new valeriana flavonoids with activity on
the CNS. Pharmacol. Biochem. Behav. 75, 537e545.
Martinez-Vazquez, M., Ramirez Apan, T.O., Aguilar, H., Bye, R., 1996. Analgesic and
antipyretic activities of an aqueous extract and of the flavone linarin of Buddleia
cordata. Planta Med. 62, 137e140.
Meotti, F.C., Luiz, A.P., Pizzolatti, M.G., Kassuya, C.A.L., Calixto, J.B., Santos, A.R.S.,
2006. Analysis of the antinociceptive effect of the flavonoid myricitrin: evi-
dence for a role of the L-arginine-nitric oxide and protein kinase C pathways.
J. Pharmacol. Exp. Ther. 316, 789e796.
Milano, J., Rossato, M.F., Oliveira, S.M., Drewes, C., Machado, P., Beck, P., Zanatta, N.,
Martins, M.A., Mello, C.F., Rubin, M.A., Ferreira, J., Bonacorso, H.G., 2008. Anti-
nociceptive action of 4-methyl-5-trifluoromethyl-5-hydroxy-4, 5-dihydro-1H-
pyrazole methylester in models of inflammatory pain in mice. Life Sci. 83 (21e
22), 739e746.
This work has been supported by grants from CONICET (PIP
Number 112-201101-00045) and UBA (UBACyT Number
20020100100415), Argentina.
References
Abbott, F., Melzack, R., Samue, C., 1982. Morphine analgesia in the tail-flick and
formalin pain test is mediated by different neural systems. Exp. Neurol. 75 (3),
644e651.
Bannon, A.W., Malmberg, A.B., 2007. Models of nociception: hot plate, tail flick, and
formalin tests in rodents. Curr. Protoc. Neurosci. S41, 8.9.1e8.9.16.
Barrot, M., 2012. Tests and models of nociception and pain in rodents. Neuroscience
211, 39e50.
Millan, M.J., 1994. Serotonin and pain: evidence that activation of 5HT1A receptors
does not elicit antinociception against noxious thermal, mechanical and
chemical stimuli in mice. Pain 58, 45e61.
Bourin, M., Masse, F., Dailly, E., Hascoët, M., 2005. Anxiolytic-like effect of milna-
cipran in the four-plate test in mice: mechanism of action. Pharmacol. Biochem.
Behav. 81, 645e656.
Bradford, M.M., 1976. A dye binding assay for protein. Anal. Biochem. 72, 248e254.
Carroll, I., Mackey, S., Gaeta, R., 2007. The role of adrenergic receptors and pain:
the good, the bad, and the unknown. Semin. Anesth. Perioper. Med. Pain 26,
17e21.
Carter, R.B., 1991. Differentiating analgesic and non-analgesic drug activities on rat
hot plate: effect of behavioral endpoint. Pain 47, 211e220.
Chou, T.C., Chang, L.P., Li, C.Y., Wong, C.S., Yang, S.P., 2003. The anti-inflammatory
and analgesic effects of baicalin in carrageenan-evoked thermal hyperalgesia.
Anesth. Analg. 97, 1724e1729.
Moskowitz, A.S., Goodmans, R.R., 1984. Light microscopic autoradiographic locali-
zation of
m and d opioid binding sites in the mouse central nervous system.
J. Neurosci. 4, 1331e1342.
Murray, C.W., Porreca, F., Cowan, A., 1988. Methodological refinements to the mouse
paw formalin tests: an animal model of tonic pain. J. Pharmacol. Method 20 (2),
175e186.
Neubert, J.K., Rossi, H.L., Pogar, J., Jenkins, A.C., Caudle, R.M., 2007. Effects of mu- and
kappa-2 opioid receptor agonists on pain and rearing behaviors. Behav. Brain
Funct. 3, 49e59.
Ognibene, E., Bovicelli, P., Adriani, W., Saso, L., Laviola, G., 2008. Behavioral effects of
6-bromoflavanone and 5-methoxy-6,8-dibromoflavanone as anxiolytic com-
pounds. Prog. Neuropsychopharmacol. Biol. Psychiatry 32 (1), 128e134.
Ormazábal, M.J., Goicoechea, C., Alfaro, M.J., Sánchez, E., Martín, M.I., 1999. Study of
mechanisms of calcitonin analgesia in mice. Involvement of 5-HT3 receptors.
Brain Res. 845, 130e138.
Coughenour, L.L., Maclean, J.R., Parker, R.B., 1977. A new device for the rapid mea-
surement of impaired motor function in mice. Pharmacol. Biochem. Behav. 6,
351e353.
De Diesbach, H., Kramer, H., 1945. Sur quelques dérivés de la tétrahydro-quinoléine.
Helv. Chim. Acta 28 (1), 1399e1405.
Fernández, S.P., Wasowski, C., Paladini, A.C., Marder, M., 2006. Central nervous
system depressant action of flavonoid glycosides. Eur. J. Pharmacol. 539,
168e176.
File, S.E., Pellow, S., 1985. The effects of triazolobenzodiazepines in two animal tests
of anxiety and in the hole board. Br. J. Pharmacol. 86, 729e735.
Guzmán-Gutiérrez, S.L., Navarrete, A., 2009. Pharmacological exploration of the
sedative mechanism of hesperidin identified as the active principle of Citrus
sinensis flowers. Planta Med. 75 (4), 295e301.
Peng, X., Knapp, B.I., Bidlack, J.M., Neumeyer, J.L., 2007. Pharmacological prop-
erties of bivalent ligands containing butorphan linked to nalbuphine,
naltrexone, and naloxone at
m, d, and k opioid receptors. J. Med. Chem. 50,
2254e2258.
Philipp, M., Brede, M., Hein, L., 2002. Physiological significance of a2-adrenergic
receptor subtype diversity: one receptor is not enough. Am. J. Physiol. Regul.
Integr. Comp. Physiol. 283, R287eR295.