V. N. Belov, S. M. Korneev, J. Angerer, A. de Meijere
FULL PAPER
(5 mL) under Ar, and the mixture was stirred at 40 °C for 36 h.
The solvent and excess of base were evaporated in vacuo, and satd.
aq. NaHCO3 (10 mL) was added to the residue. The mixture was
extracted with diethyl ether (3ϫ20 mL), and the organic layers
were discarded. The aqueous layer was acidified with 5% aq. citric
acid (pH ≈ 3) and then extracted with diethyl ether (3ϫ20 mL).
The combined organic solutions were dried and the solvents evapo-
rated in vacuo. The residue (ca. 0.1 g of the crude compound 22a)
was dissolved in THF (2 mL), and a cold mixture of concd. HCl
(0.5 mL) and water (0.2 mL) was added carefully at 0 °C. After
having kept the mixture at 0 °C for 2 h, it was concentrated in
vacuo (ca. 1 mbar) at 0 °C, the residue was dissolved in water
(1 mL), and the title compound was isolated by preparative RP-
HPLC (column 8ϫ250 mm; A/B, 96:4; 10 injections, 0.1 mL each):
tR = 6.6 min (for both epimers of the regioisomer 13-H), yield
30 mg (14%) of a glassy solid (after 3 co-evaporations with water
to remove traces of TFA from the eluent and lyophilization). 1H
NMR (300 MHz, D2O, mixture of 2 diastereomers): δ = 2.14 (s, 3
H) ppm; ABX system (cysteine residue): δA = 3.25/3.27, δB = 3.42/
3.44, δX = 4.79 (JAB = 14.2, JAX = 7.7/8.3, JBX = 4.8/5.3) ppm;
ABX system [SCH(CN)CH2OH]: δA = 3.94, δB = 4.02, δX = 4.13
(t) (JAB = 11.4, JAX = 6.2, JBX = 5.2) ppm. 13C NMR (75.5 MHz,
D2O): δ = 22.39/22.42 (Ac), 33.28/33.40 (CH2S), 36.35/36.46
(CHCN), 52.96/53.12 (CHNH), 62.15/62.12 (CH2OH), 119.69/
119.72 (CN), 173.88/173.91, 174.88/174.94 (CO) ppm. MS (ESI):
m/z (negative mode, %) = 463 (100) [2 M – H]–, 231 (24) [M –
H]–. HRMS (C8H12N2O4S): m/z (%) = 233.05908 (60) [M + H]
{233.05905 (calcd.)}, 255.04105 (100) [M + Na] {255.04100
(calcd.)}, 271.00606 (37) [M + K].
Acknowledgments
The authors are grateful to R. Machinek and Dr. H. Frauendorf
et al. (Georg-August-Universität Göttingen) for measuring NMR
and mass spectra.
[1] a) R. H. Stadler, J. Blank, N. Varga, F. Robert, J. Hau, P. A.
Guy, M. C. Robert, S. Riediker, Nature 2002, 419, 449; b) D. S.
Mottram, B. L. Wedzicha, A. T. Dodson, Nature 2002, 419,
448; c) E. Tareke, P. Rydberg, P. Karlsson, S. Eriksson, M.
Törnqvist, J. Agric. Food Chem. 2002, 50, 4998–5006; d) V. A.
Yaylayan, A. Wronowski, C. P. Locas, J. Agric. Food Chem.
2003, 51, 1753–1757; e) R. H. Stadler, F. Robert, S. Riediker,
N. Varga, T. Davidek, S. Devaud, T. Goldmann, J. Hau, I.
Blank, J. Agric. Food Chem. 2004, 52, 5550–5558; f) E. Dybing,
P. B. Farmer, M. Andersen, T. R. Fennell, S. P. Lalljie, D. J.
Müller, S. Olin, B. J. Petersen, J. Schlatter, G. Scholz, J. A. Sci-
meca, N. Slimani, M. Törnqvist, S. Tuijelaars, P. Verger, Food
Chem. Toxicol. 2005, 43, 365–410; g) U. Fuhr, M. I. Boettcher,
M. Kinzig-Schippers, A. Weyer, A. Jetter, A. Lazar, D. Taubert,
D. Tomalik-Scharte, P. Pournara, V. Jakob, S. Harlfinger, T.
Klaassen, A. Berkessel, J. Angerer, F. Sörgel, E. Schömig, Can-
cer Epidemiol. Biomarkers Prev. 2006, 15, 266–271; h) J.
Buhlert, R. Carle, Z. Majer, D. Spitzner, Lett. Org. Chem. 2006,
3, 356–357; i) J. Buhlert, R. Carle, Z. Majer, D. Spitzner, Lett.
Org. Chem. 2007, 4, 329–331.
[2] C. J. Smith, T. A. Perfetti, M. A. Rumple, A. Rodgman, D. J.
Doolittle, Food Chem. Toxicol. 2000, 38, 371–383.
[3] a) R. M. LoPachin, A. I. Schwarcz, C. L. Gaughan, S. Mansu-
khani, S. Das, Neurotoxicology 2004, 25, 349–363; b) M. S.
Miller, P. S. Spencer, Annu. Rev. Pharmacol. Toxicol. 1985, 25,
643–666.
[4] a) For a recent review on the mechanisms of acrylamide carci-
nogenicity, see: A. Besaratinia, G. P. Pfeifer, Carcinogenesis
2007, 28, 519–528; b) J. M. Rice, Mutation Res. 2005, 580, 3–
20; c) R. J. Bull, M. Robinson, R. D. Laurie, G. D. Stoner, E.
Greisiger, J. R. Meier, J. Stober, Cancer Res. 1984, 44, 107–
111; d) K. A. Johnson, S. J. Gorzinski, K. M. Bodner, R. A.
Campbell, C. H. Wolf, M. A. Friedman, R. W. Mast, Toxicol.
Appl. Pharmacol. 1986, 85, 154–168.
N-Acetyl-S-{(R/S)-1-cyano-2-hydroxy[2,2-D2]ethyl}cysteine (23b):
Compound 23b was obtained from the tosylate 21-D as described
1
above for compound 23a. H NMR (300 MHz, D2O, mixture of 2
diastereomers): δ = 2.14 (s, 3 H) ppm; ABX system (cysteine resi-
due): δA = 3.22/3.26, δB = 3.39/3.43, δX = 4.76/4.78 (JAB = 14, JAX
= 7.8/8.3, JBX = 4.65/5.05) ppm; 4.10 [s, 1 H, SCH(CN)CD2OH]
ppm. 13C NMR (75.5 MHz, D2O): δ = 21.8 (Ac), 32.66/32.78
(CH2S), 35.57/35.69 (CHCN), 52.37/52.532 (CHNH), ca. 61.5
(CD2), 119.08 (CN), 173.31/173.34, 174.30/174.36 (CO) ppm.
HRMS (C8H10D2N2O4S): m/z (%) = 235.07171 (100) [M + H]
[5] a) K. L. Dearfield, C. O. Abernathy, M. S. Ottley, J. H. Branter,
P. F. H e ye s, Mutation Res. 1988, 195, 45–77; b) for mutagenic-
ity of AA in different mammalian cell lines, see: A. Besaratinia,
G. P. Pfeifer, J. Natl. Cancer Inst. 2004, 96, 1023–1029.
[6] a) For a review on mutagenicity, carcinogenicity, and teratoge-
nicity of acrylonitrile, see: A. Leonard, G. B. Gerber, C. Stecca,
J. Rueff, H. Borba, P. B. Farmer, R. J. Sram, A. E. Czeizel, I.
Kalina, Mutation Res. 1999, 436, 263–283; b) C. Maltoni, A.
Ciliberti, G. Cotti, G. Perino, Experimental Research on Acrylo-
nitrile Carcinogenesis, Princeton Scientific Publ., N. J., USA,
1987.
{235.07160 (calcd.)}, 257.05370 (49) [M
(calcd.)}.
+ Na] {257.05355
N-Acetyl-S-{(R/S)-1-cyano-2-hydroxy[1,2,2-D3]ethyl}cysteine (23c):
Compound 23c was obtained from the tosylate 21-D (0.36 g,
1.0 mmol) and N-acetylcystein (0.28 g, 1.7 mmol) in MeOD
(10 mL) with Et3N as described above for compound 23a (ϵ 13-
H). The residue after evaporation of the solvent and the excess of
Et3N, was treated with D2O (6 mL) and Na2CO3, until the pH
value of the aqueous phase reached 9–10. The mixture was ex-
tracted with diethyl ether (3ϫ5 mL), and the aqueous layer was
carefully acidified at 0 °C with D2SO4 diluted with D2O (1:4), until
the pH value of the solution reached 3. Further workup was per-
formed as described above for compound 23a, and finally 32 mg
(14%) of the title compound 23c was isolated. 1H NMR (300 MHz,
D2O, mixture of 2 diastereomers): δ = 2.13 (s, 3 H) ppm; ABX
system (cysteine residue): δA = 3.23/3.27, δB = 3.38/3.42, δX = 4.77/
4.80 (JAB = 14.1, JAX = 7.6/8.2, JBX = 4.6/5.1) ppm. 13C NMR
(75.5 MHz, D2O): δ = 22.35/22.39 (Ac), 33.2/33.3 (CH2S), ca. 36
(m, CDCN), 52.9/53.1 (CHNH), ca. 62 (m, CD2), 119.7 (CN),
173.82/173.85, 174.89/174.95 (CO) ppm. MS (ESI): m/z (negative
mode; %) = 469 (100) [2 M – H]–, 234 (16) [M – H]–. HRMS
(C8H9D3N2O4S): m/z (%) = 236.07792 (100) [M + H] {236.07788
(calcd.)}, 258.05992 (63) [M + Na] {258.06038 (calcd.)}.
[7] S. Venite, C. T. Bushell, M. Osborne, Mutat. Res. 1977, 45,
283–288.
[8] a) S. C. J. Sumner, T. R. Fennel, T. A. Moore, B. Chanas, F.
Conzalez, B. I. Ghanayem, Chem. Res. Toxicol. 1999, 12, 1110–
1116; b) T. R. Fennell, G. L. Kedderis, S. C. J. Sumner, Chem.
Res. Toxicol. 1991, 4, 678–687.
[9] a) For the synthesis of the isotopically labelled Michael adduct
of HValLeuNHPh to AN as an internal standard for the quan-
tification of human exposure to this toxic electrophile by deter-
mination of the corresponding haemoglobin adduct, see: V. N.
Belov, M. Müller, O. Ignatenko, E. Hallier, A. de Meijere, Eur.
J. Org. Chem. 2005, 5094–5099; b) for the conjugation of acry-
lonitrile and 2-cyanoethylene oxide with hepatic glutathione,
see: G. L. Kedderis, R. Batra, M. J. Turner Jr, Toxicol. Appl.
Pharmacol. 1995, 135, 9–17; for the mutagenic properties and
DNA adduct formation of AA and GA, see: c) A. Besaratina,
G. P. Pfeifer, Mutat. Res. 2005, 580, 31–40; d) D. R. Doerge,
G. Gamboa da Costa, L. P. McDaniel, M. I. Churchwell, N. C.
4424
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 4417–4425