LETTER
Bispyrrolidines by Radical Cyclisation
2145
(6) For recent work on addition reactions of phosphorus-centred
radicals, see: (a) Jessop, C. M.; Parsons, A. F.; Routledge,
A.; Irvine, D. J. Eur. J. Org. Chem. 2006, 1547. (b) Jessop,
C. M.; Parsons, A. F.; Routledge, A.; Irvine, D. Tetrahedron
Lett. 2003, 44, 479. (c) Jessop, C. M.; Parsons, A. F.;
Routledge, A.; Irvine, D. J. Tetrahedron Lett. 2004, 45,
5095. (d) Cho, D. H.; Jang, D. O. Synlett 2005, 59.
(e) Hunt, T. A.; Parsons, A. F.; Pratt, R. J. Org. Chem. 2006,
71, 3656. (f) Montchamp, J.-L. J. Organomet. Chem. 2005,
690, 2388. (g) Leca, D.; Fensterbank, L.; Lacôte, E.;
Malacria, M. Chem. Soc. Rev. 2005, 34, 858. (h) Parsons,
A. F.; Sharpe, D. J.; Taylor, P. Synlett 2005, 2981. (i) Hunt,
T.; Parsons, A. F.; Pratt, R. Synlett 2005, 2978. (j) Healy,
M. P.; Parsons, A. F.; Rawlinson, J. G. T. Org. Lett. 2005, 7,
1597. (k) Carta, P.; Puljic, N.; Robert, C.; Dhimane, A.-L.;
Fensterbank, L.; Lacôte, E.; Malacria, M. Org. Lett. 2007, 9,
1061. (l) Montchamp, J.-L.; Antczak, M. I. Synthesis 2006,
3080. (m) Healy, M. P.; Parsons, A. F.; Rawlinson, J. G. T.
Synlett 2008, 329. (n) Beaufils, F.; Dénès, F.; Renaud, P.
Angew. Chem. Int. Ed. 2005, 44, 5273.
CDCl3): d = 39.6. ESI-MS: m/z (%) = 316 (100), 567 (92)
[M – H+]. ESI-HRMS: m/z calcd for C26H37N2O6PS2:
567.1758; found: 567.1752.
(9) (a) Williams, R. H.; Hamilton, L. A. J. Am. Chem. Soc. 1955,
77, 3411. (b) Nifant’ev, E. E.; Magdeeva, R. K.;
Shchepet’eva, N. P. J. Gen. Chem. USSR 1980, 50, 1416.
(c) Dubert, O.; Gautier, A.; Condamine, E.; Piettre, S. R.
Org. Lett. 2002, 4, 359.
(10) Froestel, W.; Mickel, S. J.; Hall, R. G.; von Sprecher, G.;
Strub, D.; Baumann, P. A.; Brugger, F.; Gentsch, C.; Jaekel,
J.; Olpe, H.-R.; Rihs, G.; Vassout, A.; Waldmeier, P. C.;
Bittiger, H. J. Med. Chem. 1995, 38, 3297.
(11) In the absence of AIBN or Et3B, pyrrolidine products were
formed in low yields after extended reaction times. For
example, heating 2a (1 equiv) with H3PO2 (4.3 equiv) in
degassed dioxane for 3 d, followed by esterification, gave a
4.7:1 mixture of 9 and 10, respectively, in a combined yield
of only 34%.
(12) (a) Deprèle, S.; Montchamp, J.-L. J. Organomet. Chem.
2002, 643-644, 154. (b) Montchamp, J.-L. J. Organomet.
Chem. 2005, 690, 2388.
(7) All new compounds gave spectroscopic data and high-
resolution mass spectrometric data consistent with their
assigned structure.
(8) Bis({4-methyl-1-[(4-methylphenyl)sulfonyl]-3-
pyrrolidinyl}methyl)phosphinic Acid (8a)
(13) (a) Cristau, H.-J.; Coulombeau, A.; Genevois-Borella, A.;
Sanchez, F.; Pirat, J.-L. J. Organomet. Chem. 2002, 643-
644, 381. (b) Deprèle, S.; Montchamp, J.-L. J. Org. Chem.
2001, 66, 6745.
A boiling solution of N,N-diallyl-4-methylbenzenesulfon-
amide (2a, 0.613 g, 2.439 mmol) and hypophosphorous acid
(0.070 g, 1.061 mmol), in anhyd THF (5 mL) was treated
with AIBN (4 × 0.087 g, 4 × 0.531 mmol) over 36 h. After
cooling to r.t., brine (20 mL) was added and the mixture
extracted with CH2Cl2 (3 × 20 mL). The combined layers
were dried (MgSO4), concentrated (under reduced pressure),
and column chromatography [SiO2, PE–EtOAc (4:6) to
EtOAc–MeOH (1:1)] gave phosphinic acid 8a (0.495 g,
82%) as an inseparable mixture of isomers, with a cis/trans
ratio of 2.2:1 (from the 1H NMR spectrum); white solid; mp
118–127 °C. IR (CH2Cl2): nmax = 3541, 3058, 2964, 2882,
1598, 1479, 1454, 1406, 1384, 1337, 1160, 1093, 1044, 955
cm–1.
(14) (a) Gallagher, M. J.; Honegger, H. Aust. J. Chem. 1980, 33,
287. (b) Kehler, J.; Ebert, B.; Dahl, O.; Krogsgaard-Larsen,
P. Tetrahedron 1999, 55, 771.
(15) Bond-dissociation energies based on DFT calculations
(B3LYP functional, 6-13G(d,p) basis set, calculations
performed using Gaussian03) for PhP(S)(OEt)H and
PhP(O)(OEt)H are around 316 and 345 kJ mol–1,
respectively. McGrady, J. E.; Pantazis, D. unpublished
results.
(16) O-(3-{[({4-Methyl-1-[(4-methylphenyl)sulfonyl]-3-pyr-
rolidinyl}methyl)(phenyl)phosphorothioyl]oxy}prop-
yl){4-methyl-1-[(4-methylphenyl)sulfonyl]-3-
pyrrolidinyl}methyl(phenyl)phosphinothioate (16a)
A boiling solution of N,N-diallyl-4-methylbenzene
sulfonamide (2a, 0.372 g, 1.479 mmol) and O-(3-{[phen-
yl(thioxo)phosphoranyl]oxy}propyl)phenylphosphinothioate
(14, 0.264 g, 0.741 mmol) in anhyd THF (15 mL) was
treated portionwise with AIBN (4 × 0.024 g, 4 × 0.148
mmol) over 36 h. After cooling to r.t., 1 M aq NaOH (20 mL)
was added and the mixture extracted with CH2Cl2 (3 × 15
mL). The combined organic layers were dried (MgSO4),
concentrated (under reduced pressure), and column
chromatography [SiO2, CH2Cl2–EtOAc (97:3)] gave
bispyrrolidine 16a (0.477 g, 75%) as an inseparable mixture
of isomers, with a cis/trans ratio of 2.5:1 (from the 1H NMR
spectrum); white solid; mp 61–66 °C. IR (CHCl3):
cis-Diastereomers: 1H NMR (400 MHz, CDCl3): d = 7.72 (d,
J = 8.0 Hz, 4 H, 4 × SCCH, arom), 7.43–7.38 (m, 4 H,
4 × CHCCH3, arom), 3.52 (dd, J = 9.5, 7.5 Hz, 2 H,
2 × CHaHbCHCH2P), 3.36–3.26 (m, 2 H,
2 × CH3CHCHaHb), 3.08–2.95 (m, 4 H,
2 × CHaHbNCHaHbCHCH2P), 2.50–2.30 (m, 2 H,
2 × CHCH2P), 2.43, 2.42 (2 × br s, 6 H, 2 × ArCH3), 2.30–
2.11 (m, 2 H, 2 × CH3CH), 1.47 (dq, J = 15.0, 4.5 Hz, 2 H,
2 × CHaHbP), 1.37–1.10 (m, 2 H, 2 × CHaHbP), 0.68, 0.65 (d
and dd, J = 7.0 Hz and 7.0, 2.5 Hz, 6 H, 2 × CH3CH). 13
NMR (100 MHz, CDCl3): d = 145.0, 144.9 (2 × SCCH,
arom), 135.2, 135.1 (2 × CHCCH3, arom), 130.8
C
(4 × CHCCH3), 128.7, 128.6 (4 × SCCH, arom), 55.6
nmax = 3022, 2967, 2892, 2433, 2401, 2255, 1965, 1919,
(2 × CH3CHCH2), 53.0, 52.7 (br s and d, 3JCP = 5.5 Hz,
1822, 1598, 1479, 1437, 1400, 1385, 1342, 1305, 1289,
2 × CH2CHCH2P), 37.9–37.4 (m, 2 × CHCH2P), 37.7, 37.2
1216, 1160, 1109, 1095, 1041, 1017, 968 cm–1.
(2 × d, 3JCP = 12.0, 10.5 Hz, 2 × CH3CH), 30.3 (br d, 1JCP
89.5 Hz, 2 × CH2P), 21.5 (2 × ArCH3), 13.7, 13.6
(2 × CH3CH).
=
cis-Diastereomers: 1H NMR (400 MHz, CDCl3): d = 7.89–
7.75 (m, 4 H, 4 × PCCH, arom), 7.72–7.66 and 7.62–7.56
(2 × m, 4 H, 4 × SCCH, arom), 7.59–7.51 (m, 2 H,
2 × PCCHCHCH, arom), 7.55–7.41 (m, 4 H, 2 × PCCHCH,
arom), 7.35–7.26 (m, 4 H, 4 × SCCHCH, arom), 4.20–4.04
and 3.75–3.58 (2 × m, 4 H, POCH2CH2CH2), 3.25 (dd, J =
9.5, 6.5 Hz, 2 H, 2 × CH3CHCHaHbN), 3.17 (br t, J = 9.0 Hz,
2 H, 2 × NCHaHbCHCH2P), 3.04–2.94 (m, 2 H,
trans-Diastereomers: 1H NMR (400 MHz, CDCl3):
d = 3.81–3.70 (m, 2 H, 2 × CHaHbCHCH2P), 3.52–3.43 (m,
2 H, 2 × CH3CHCHaHb), 3.08–2.90 (m, 2 H,
2 × CHaHbCHCH2P), 2.73 (br t, J = 9.5 Hz, 2 H,
2 × CH3CHCHaHb), 1.72–1.05 (m, 8 H, 2 × CHCHCH2P),
0.91, 0.87 (d and dd, J = 6.5 Hz and 8.0, 6.5 Hz, 6 H,
2 × CH3CH). 13C NMR (100 MHz, CDCl3): d = 55.7–55.2
(m, 2 × CH3CHCH2), 55.3–54.9 (2 × CH2CHCH2P), 41.9–
41.3 (m, 2 × CH3CHCH), 31.7 (br d, 1JCP = 90.5 Hz,
2 × CH2P), 15.9, 15.8 (2 × CH3CH). 31P NMR (162 MHz;
2 × CH3CHCHaHbN), 2.80–2.67 (m, 2 H,
NCHaHbCHCH2P), 2.56–2.35 (m, 2 H, 2 × CHCH2P), 2.44,
2.42 (2 × s, 6 H, 2 × ArCH3), 2.30–1.96 (m, 2 H,
2 × CH3CH), 2.05–1.65 (m, 4 H, 2 × CH2P), 1.97–1.78 (m, 2
H, POCH2CH2), 0.74, 0.70 (2 × d, J = 7.0, 7.0 Hz) and 0.65–
Synlett 2008, No. 14, 2142–2146 © Thieme Stuttgart · New York