6696
S. Chandrasekhar et al. / Tetrahedron Letters 50 (2009) 6693–6697
3. (a) Roth, B.; Aig, E.; Rauckman, B. S.; Strelitz, J. Z.; Phillips, A. P. J. Med. Chem.
X
X
PMHS
B(C6F5)3-5 mol%
1981, 24, 933; (b) Matsumoto, T.; Singh, I. P.; Etoh, H.; Tanaka, H. Chem. Lett.
2001, 210; (c) Katritzky, A. R.; Tao, H.; Jiang, R.; Suzuki, K.; Kirichenko, K. J. Org.
Chem. 2007, 72, 407.
CHO
OMe
CH2Cl2, rt, 2 h
4. (a) Nay, B.; Collet, M.; Lebon, M.; Cheze, C.; Vercauteren, J. Tetrahedron Lett.
2002, 43, 2675; (b) Cottineau, B.; Chenault, J.; Guillaumet, G. Tetrahedron Lett.
2006, 47, 817.
5. (a) Butsugan, Y.; Nagai, K.; Nagaya, F.; Tabuchi, H.; Yamada, K.; Araki, S. Bull.
Chem. Soc. Jpn. 1988, 61, 1707; (b) Bergh, A.; Leffler, H.; Sundin, A.; Nilsson, U. J.;
Kann, N. Tetrahedron 2006, 62, 8309; (c) Li, C.; Wang, J. J. Org. Chem. 2007, 72,
7431.
MeO
MeO
OMe
X= O, 5a
X= NBoc, 5b
X= O, 64%, 6a
X= NBoc, 46%, 6b
Scheme 2. Intramolecular reductive alkylation.
6. (a) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669; (b) Roelens, F.; Huvaere, K.;
Dhooge, W.; Cleemput, M. V.; Comhaire, F.; Keukeleire, D. D. Eur. J. Med. Chem.
2005, 40, 1042; (c) Roelens, F.; Heldring, N.; Dhooge, W.; Bengtsson, M.;
Comhaire, F.; Gustafsson, J. A.; Treuter, E.; Keukeleire, D. D. J. Med. Chem. 2006,
49, 7357.
7. (a) Miyai, T.; Onishi, Y.; Baba, A. Tetrahedron Lett. 1998, 39, 6291; (b) Dube, D.;
Scholte, A. A. Tetrahedron Lett. 1999, 40, 2295; (c) Miyai, T.; Onishi, Y.; Baba, A.
Tetrahedron 1999, 55, 1017; (d) Augustine, J. K.; Naik, Y. A.; Mandal, A. B.;
Alagarsamy, P.; Akabote, V. Synlett 2008, 2429.
85% yield (Table 2, entry 5). This observation of triarylmethane for-
mation12–14 in the presence of B(C6F5)3 prompted us to examine
the diversity in the aldehyde part. Table 3 describes the reaction
of electron-rich arenes 1a, 1d, and 1e with different aldehydes to
obtain the corresponding alkylated products 4c to 4f in good yields
(Table 3, entries 1–5).
8. (a) Chandrasekhar, S.; Chandrasekhar, G.; Vijeender, K.; Reddy, M. S.
Tetrahedron Lett. 2006, 47, 3475; (b) Chandrasekhar, S.; Chandrashekar, G.;
Reddy, M. S.; Srihari, P. Org. Biomol. Chem. 2006, 4, 1650; (c) Chandrasekhar, S.;
Chandrashekar, G.; Babu, B. N.; Vijeender, K.; Reddy, K. V. Tetrahedron Lett.
2004, 45, 5497; (d) Chandrasekhar, S.; Reddy, C. R.; Babu, B. N. J. Org. Chem.
2002, 67, 9080. and references cited therein.
9. (a) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem.
2000, 65, 6179; (b) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440; (c)
Gevorgyan, V.; Rubin, M.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2001, 66, 1672;
(d) Parks, D. J.; Blackwell, J. M.; Piers, W. E. J. Org. Chem. 2000, 65, 3090; (e)
Dierker, G.; Ugolotti, J.; Kehr, G.; Froehlich, R.; Erker, G. Adv. Synth. Cat. 2009,
351, 1080; (f) Chojnowski, J.; Rubinsztajn, S.; Cella, J. A.; Fortuniak, W.; Cypryk,
M.; Kurjata, J.; Kazmierski, K. Organometallics 2005, 24, 6077.
10. (a) Reddy, C. R.; Vijeender, K.; Parida, B. B.; Madhavi, P. P.; Chandrasekhar, S.
Tetrahedron Lett. 2007, 48, 2765; (b) Chandrasekhar, S.; Debjit, B.; Reddy, C. R.
Synthesis 2007, 1509.
11. These results indicate that the electron-rich arene will first undergo Friedel–
Crafts alkylation with aldehyde followed by nucleophilic addition of hydride or
with arene based on their reactivity.
Next, we set out to expand this method to application for the
intramolecular reductive alkylation (Scheme 2). Consequently,
treatment of 5a and 5b with PMHS–B(C6F5)3 reagent system
afforded the corresponding intramolecular alkylated products,
isochroman derivative 6a (64%) and tetrahydroisoquinoline deriva-
tive 6b (46%) without effecting the Boc protection. All the products
obtained were fully characterized by 1H, 13C NMR, mass, and IR
spectra.15
In summary, an efficient B(C6F5)3-catalyzed reductive alkylation
of alkoxybenzenes using aldehyde as alkylating agents is success-
fully established in the presence of PMHS. Further, B(C6F5)3-cata-
lyzed reaction of electron-rich arenes with aldehydes to obtain
triarylmethanes has also been demonstrated. The reaction de-
scribed here is mild, efficient, general, and gives good yield of the
product. The utility of the present method was successfully dem-
onstrated for the synthesis of isochroman and tetrahydroisoquino-
line derivatives.
12. The importance of triarylmethanes, see: (a) Mibu, N.; Sumoto, K. Chem. Pharm.
Bull. 2000, 48, 1810; (b) Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G.
Tetrahedron 2006, 62, 6731.
13. Earlier methods for the preparation of triarylmethanes, see: (a) Roomi, M.;
MacDonald, S. Can. J. Chem 1970, 48, 139; (b) Banerji, J.; Chatterjee, A.; Manna,
S.; Pascard, C.; Prange, T.; Shoolery, J. Heterocycles 1981, 15, 325; (c) Chen, D.;
Yu, L.; Wang, P. G. Tetrahedron Lett. 1996, 37, 4467; (d) Babu, G.; Sridhar, N.;
Perumal, P. T. Synth. Commun. 2000, 30, 1609; (e) Yadav, J. S.; Reddy, B. V. S.;
Murthy, C. V. S. R.; Kumar, G. M.; Madan, C. Synthesis 2001, 783; (f) Yadav, J. S.;
Reddy, B. V. S.; Satheesh, G. Tetrahedron Lett. 2004, 45, 3673; (g) Sharma, G. V.
M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R. Tetrahedron Lett. 2004, 45, 7729.
and references cited therein.
14. Recent methods for the preparation of triarylmethanes, see: (a) Nair, V.;
Abhilash, K. G.; Vidya, N. Org. Lett. 2005, 7, 5857; (b) Nair, V.; Abhilash, K. G.;
Vidya, N. Synthesis 2006, 3647; (c) Roy, S.; Roy, U. K.; Choudhury, J.; Poddar, S. J.
Org. Chem. 2007, 72, 3100; (d) Kodomari, M.; Nagamatsu, M.; Akaike, M.;
Aoyama, T. Tetrahedron Lett. 2008, 49, 2537.
Representative experimental procedure for reductive alkylation:
To
a stirred solution of trimethoxybenzene (1a, 1 mmol) in
dichloromethane, benzaldehyde (2d, 1 mmol) was added. To this
stirred solution, polymethylhydrosiloxane (3 mmol) and 5 mol %
of B(C6F5)3 were added at room temperature and the reaction
progress was monitored by TLC analysis. After the completion of
the reaction (1 h), the solvent was evaporated under vacuum and
the residue was purified by column chromatography on silica gel
using ethyl acetate and hexanes (10:90) as eluent to give the ben-
zyl trimethoxybenzene 3d in 90% yield.
15. Spectral data of new compounds: (3e): mp 95.7–96.5 °C; 1H NMR (CDCl3,
300 MHz): d 7.78 (dd, J = 1.32, 8.12 Hz, 1H), 7.35 (dt, J = 1.3, 7.5 Hz, 1H), 7.25–
7.13 (m, 2H), 6.13 (s, 2H), 4.22 (s, 2H), 3.81 (s, 3H), 3.73 (s, 6H); 13C NMR
(CDCl3, 75 MHz): d 160.2 (2C), 158.8, 149.9, 136.7, 132.2, 130.6, 126.0, 123.7,
108.1, 90.3 (2C), 55.5 (2C), 55.3, 24.2; HRMS (ESI) calcd for C16H17NO5Na:
326.1015 M+Na+, found: 326.1004 M+Na+; IR (KBr): mmax 2924, 2853, 1606,
1520, 1462, 1352, 1211, 1150 cmꢀ1; (3f): mp 162.4–163.6 °C; 1H NMR (CDCl3,
300 MHz): d 6.99 (q, J = 5.6, 8.3 Hz, 1H), 6.82 (t, J = 8.7 Hz, 1H), 6.17 (s, 1H), 6.1
(s, 3H), 3.78 (s, 4H), 3.51 (s, 7H); 13C NMR (CDCl3, 75 MHz): d 161.9, 159.6,
159.1, 158.8, 141.1, 129.0, 128.9, 113.9, 113.6, 113.3, 91.7 (2C), 56.0 (2C), 55.0,
36.4; HRMS (ESI) calcd for C16H16O3F: 275.1095 MꢀHꢀ, found: 275.1083
MꢀHꢀ; IR (neat): mmax 2935, 2838, 1596, 1460, 1223, 1120 cmꢀ1; (3g): mp
121.8–122.9 °C; 1H NMR (CDCl3, 300 MHz): d 7.07 (t, J = 7.8 Hz, 1H), 6.81 (d,
J = 7.5 Hz, 1H), 6.66 (s, 1H), 6.58 (dd, J = 2.4, 8.1 Hz, 1H), 6.14 (s, 2H), 3.88 (s,
2H), 3.8 (s, 3H), 3.7 (s, 6H); 13C NMR (CDCl3, 75 MHz): d 159.6 (2C), 158.8,
155.2, 144.1, 128.9, 120.9, 115.3, 112.1, 109.8, 90.6 (2C), 55.7 (2C), 55.3, 28.1;
HRMS (ESI) calcd for C16H19O4: 275.1296 M+H+, found: 275.1283 M+H+; IR
(neat): mmax 3392, 2928, 2841, 1605, 1458, 1201, 1117 cmꢀ1; (3h): mp 126.8–
127.8 °C; 1H NMR (CDCl3, 300 MHz): d 6.66 (d, J = 8.7 Hz, 1H), 6.51 (dd, J = 3.1,
8.7 Hz, 1H), 6.15 (d, J = 3.0 Hz, 1H), 6.09 (s, 2H), 3.83 (s, 3H), 3.80 (s, 3H), 3.78 (s,
2H), 3.73 (s, 6H), 3.60 (s, 3H); 13C NMR (CDCl3, 75 MHz): d 159.8 (2C), 159.3,
153.4, 151.8, 131.6, 115.1, 110.6, 109.3, 108.2, 90.58 (2C), 56.1 (2C), 55.7, 55.4,
55.2, 22.2; HRMS (ESI) calcd for C18H22O5Na: 341.1375 M+Na+, found:
Representative experimental procedure for the synthesis of triar-
ylmethanes: To a stirred solution of indole (1d, 1 mmol) in dichloro-
methane, trifluoromethyl benzaldehyde (2l, 0.5 mmol) and 5 mol %
of B(C6F5)3 were added at room temperature and the reaction pro-
gress was monitored by TLC analysis. After the completion of the
reaction (0.5 h), the solvent was evaporated under vacuum and
the residue was purified by column chromatography on silica gel
using ethyl acetate and hexanes (15:85) as eluent to give the triar-
ylmethane 4e in 93% yield.
Acknowledgments
S.K. thanks CSIR, New Delhi and G.R. thanks UGC, New Delhi, for
the award of research fellowships. The authors thank the referees
for their valuable suggestions.
References and notes
341.1364 M+Na+; IR (neat): mmax 2925, 2834, 1603, 1461, 1202, 1118 cmꢀ1
;
1. (a) Nat. Prod. Chem; Nakanishi, K., Goto, T., Ito, S., Natori, S., Nozoe, S., Eds.;
Kodansha Scientific: Tokyo, 1975; p 131; (b) Olah, G. A.; Krishnamurti, R.;
Prakash, G. K. S.. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon
Press: Oxford, 1991; Vol. 3, p 293; (c) Roberts, R. M.; Khalaf, A. A.. Friedel–Crafts
Alkylation Chemistry. In A Century of Discovery; Dekker: New York, 1984.
2. (a) Ackermann, W.; Heesing, A. Chem. Ber. 1977, 110, 3126; (b) Inoue, M.;
Umaki, N.; Sugita, T.; Ichikawa, K. Nippon Kagaku Kaishi 1978, 775.
(3i): mp 95.7–96.7 °C; 1H NMR (CDCl3, 300 MHz): d 7.11–6.76 (m, 8H), 6.16 (s,
2H), 3.98 (s, 2H), 3.82 (s, 3H), 3.79 (s, 3H), 3.71 (s, 6H); 13C NMR (CDCl3,
75 MHz): d 159.7 (2C), 159.2, 155.3, 155.0, 151.7, 132.9, 129.0, 126.3, 122.9,
119.2 (2C), 118.1, 114.5 (2C), 108.7, 90.5 (2C), 55.6 (2C), 55.3 (2C), 22.1; HRMS
(ESI) calcd for C23H25O5: 381.1715 M+H+, found: 381.1701 M+H+; IR (KBr): mmax
2925, 2837, 1602, 1502, 1452, 1211, 1118 cmꢀ1; (3j): ½a D27
ꢀ29.6 (c 0.8, CHCl3);
ꢁ