7064 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 22
Letters
(3) It was recently decided by IUPHAR to recommend the name FFA1
as GPR40 and FFAR1.
(4) Briscoe, C. P.; Tadayyon, M.; Andrews, J. L.; Benson, W. G.;
Chambers, J. K.; Eilert, M. M.; Ellis, C.; Elshourbagy, N. A.; Goetz,
A. S.; Minnick, D. T.; Murdock, P. R.; Sauls, H. R., Jr.; Shabon, U.;
Spinage, L. D.; Strum, J. C.; Szekeres, P. G.; Tan, K. B.; Way, J. M.;
Ignar, D. M.; Wilson, S.; Muir, A. I. The orphan G protein-coupled
receptor GPR40 is activated by medium and long chain fatty acids.
J. Biol. Chem. 2003, 278, 11303–11311.
(15) Ogawa, T.; Hirose, H.; Miyashita, K.; Saito, I.; Saruta, T. GPR40 gene
Arg211His polymorphism may contribute to the variation of insulin
secretory capacity in Japanese men. Metabolism 2005, 54, 296–299.
(16) Hamid, Y. H.; Vissing, H.; Holst, B.; Urhammer, S. A.; Pyke, C.;
Hansen, S. K.; Glumer, C.; Borch-Johnsen, K.; Jorgensen, T.;
Schwartz, T. W.; Pedersen, O.; Hansen, T. Studies of relationships
between variation of the human G protein-coupled receptor 40 gene
and type 2 diabetes and insulin release. Diabetic Med. 2005, 22, 74–
80.
(17) Discussion on agonsts vs antagonists as FFA1 modulators for type 2
diabetes: Brownlie, R.; Mayers, R. M.; Pierce, J. A.; Marley, A. E.;
Smith, D. M. The long-chain fatty acid receptor, GPR40, and
glucolipotoxicity: investigations using GPR40-knockout mice. Bio-
chem. Soc. Trans. 2008, 36, 950–954.
(5) Kotarsky, K.; Nilsson, N. E.; Flodgren, E.; Olde, B.; Owman, C. A
human cell surface receptor activated by free fatty acids and thiazo-
lidinedione drugs. Biochem. Biophys. Res. Commun. 2003, 301, 406–
410.
(18) Garrido, D. M.; Corbett, D. F.; Dwornik, K. A.; Goetz, A. S.; Littleton,
T. R.; McKeown, S. C.; Mills, W. Y.; Smalley, T. L., Jr.; Briscoe,
C. P.; Peat, A. J. Synthesis and activity of small molecule GPR40
agonists. Bioorg. Med. Chem. Lett. 2006, 16, 1840–1845.
(19) McKeown, S. C.; Corbett, D. F.; Goetz, A. S.; Littleton, T. R.; Bigham,
E.; Briscoe, C. P.; Peat, A. J.; Watson, S. P.; Hickey, D. M. Solid
phase synthesis and SAR of small molecule agonists for the GPR40
receptor. Bioorg. Med. Chem. Lett. 2007, 17, 1584–1589.
(20) Song, F.; Lu, S.; Gunnet, J.; Xu, J. Z.; Wines, P.; Proost, J.; Liang,
Y.; Baumann, C.; Lenhard, J.; Murray, W. V.; Demarest, K. T.; Kuo,
G. H. Synthesis and biological evaluation of 3-aryl-3-(4-phenoxy)-
propionic acid as a novel series of G protein-coupled receptor 40
agonists. J. Med. Chem. 2007, 50, 2807–2817.
(21) Tikhonova, I. G.; Sum, C. S.; Neumann, S.; Engel, S.; Raaka, B. M.;
Costanzi, S.; Gershengorn, M. C. Discovery of novel agonists and
antagonists of the free fatty acid receptor 1 (FFAR1) using virtual
screening. J. Med. Chem. 2008, 51, 625–633.
(22) Kassack, M. U.; Hofgen, B.; Lehmann, J.; Eckstein, N.; Quillan, J. M.;
Sadee, W. Functional screening of G protein-coupled receptors by
measuring intracellular calcium with a fluorescence microplate reader.
J. Biomol. Screening 2002, 7, 233–246.
(23) The unpublished FFA1 agonist TUG-20 (3-(4-(benzyloxy)phenyl)pro-
panoic acid) has a pEC50 of 6.35 ( 0.03 and an efficacy of 123%
relative to linoleic acid.
(24) The correlation between pEC50 and log P (calculated by ChemBio-
Draw, version 11.0) for compounds 11-16 and 19 was 0.98.
(25) Lee, P. H.; Gao, A.; van Staden, C.; Ly, J.; Salon, J.; Xu, A.; Fang,
Y.; Verkleeren, R. Evaluation of dynamic mass redistribution technol-
ogy for pharmacological studies of recombinant and endogenously
expressed G protein-coupled receptors. Assay Drug DeV. Technol.
2008, 6, 83–94.
(26) Fang, Y.; Frutos, A. G.; Verklereen, R. Label-free cell-based assays
for GPCR screening. Comb. Chem. High Throughput Screening 2008,
11, 357–369.
(27) Ullrich, S.; Berchtold, S.; Ranta, F.; Seebohm, G.; Henke, G.; Lupescu,
A.; Mack, A. F.; Chao, C. M.; Su, J.; Nitschke, R.; Alexander, D.;
Friedrich, B.; Wulff, P.; Kuhl, D.; Lang, F. Serum- and glucocorticoid-
inducible kinase 1 (SGK1) mediates glucocorticoid-induced inhibition
of insulin secretion. Diabetes 2005, 54, 1090–1099.
(6) Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.;
Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka,
H.; Maruyama, M.; Satoh, R.; Okubo, S.; Kizawa, H.; Komatsu, H.;
Matsumura, F.; Noguchi, Y.; Shinohara, T.; Hinuma, S.; Fujisawa,
Y.; Fujino, M. Free fatty acids regulate insulin secretion from
pancreatic beta cells through GPR40. Nature 2003, 422, 173–176.
(7) Salehi, A.; Flodgren, E.; Nilsson, N. E.; Jimenez-Feltstrom, J.;
Miyazaki, J.; Owman, C.; Olde, B. Free fatty acid receptor 1 (FFA(1)R/
GPR40) and its involvement in fatty-acid-stimulated insulin secretion.
Cell Tissue Res. 2005, 322, 207–215.
(8) Shapiro, H.; Shachar, S.; Sekler, I.; Hershfinkel, M.; Walker, M. D.
Role of GPR40 in fatty acid action on the beta cell line INS-1E.
Biochem. Biophys. Res. Commun. 2005, 335, 97–104.
(9) Briscoe, C. P.; Peat, A. J.; McKeown, S. C.; Corbett, D. F.; Goetz,
A. S.; Littleton, T. R.; McCoy, D. C.; Kenakin, T. P.; Andrews, J. L.;
Ammala, C.; Fornwald, J. A.; Ignar, D. M.; Jenkinson, S. Pharma-
cological regulation of insulin secretion in MIN6 cells through the
fatty acid receptor GPR40: identification of agonist and antagonist
small molecules. Br. J. Pharmacol. 2006, 148, 619–628.
(10) Steneberg, P.; Rubins, N.; Bartoov-Shifman, R.; Walker, M. D.;
Edlund, H. The FFA receptor GPR40 links hyperinsulinemia, hepatic
steatosis, and impaired glucose homeostasis in mouse. Cell Metab.
2005, 1, 245–258.
(11) Latour, M. G.; Alquier, T.; Oseid, E.; Tremblay, C.; Jetton, T. L.;
Luo, J.; Lin, D. C.; Poitout, V. GPR40 is necessary but not sufficient
for fatty acid stimulation of insulin secretion in vivo. Diabetes 2007,
56, 1087–1094.
(12) Tan, C. P.; Feng, Y.; Zhou, Y. P.; Eiermann, G. J.; Petrov, A.; Zhou,
C.; Lin, S.; Salituro, G.; Meinke, P.; Mosley, R.; Akiyama, T. E.;
Einstein, M.; Kumar, S.; Berger, J. P.; Mills, S. G.; Thornberry, N. A.;
Yang, L.; Howard, A. D. Selective small-molecule agonists of G
protein-coupled receptor 40 promote glucose-dependent insulin secre-
tion and reduce blood glucose in mice. Diabetes 2008, 57, 2211–
2219.
(13) Kebede, M.; Alquier, T.; Latour, M. G.; Semache, M.; Tremblay, C.;
Poitout, V. The fatty-acid receptor GPR40 plays a role in insulin
secretion in vivo after high-fat feeding. Diabetes 2008, 57, 2432–
2437.
(14) Vettor, R.; Granzotto, M.; De Stefani, D.; Trevellin, E.; Rossato, M.;
Farina, M. G.; Milan, G.; Pilon, C.; Nigro, A.; Federspil, G.; Vigneri,
R.; Vitiello, L.; Rizzuto, R.; Baratta, R.; Frittitta, L. Loss-of-function
mutation of the GPR40 gene associates with abnormal stimulated
insulin secretion by acting on intracellular calcium mobilization.
J. Clin. Endocrinol. Metab. 2008, 93, 3541–3550.
(28) Tikhonova, I. G.; Sum, C. S.; Neumann, S.; Thomas, C. J.; Raaka,
B. M.; Costanzi, S.; Gershengorn, M. C. Bidirectional, iterative
approach to the structural delineation of the functional “chemoprint”
in GPR40 for agonist recognition. J. Med. Chem. 2007, 50, 2981–2989.
JM8010178