Organic & Biomolecular Chemistry
Paper
G. Yang, X. Zhu and Y. Liu, J. Org. Chem., 2007, 72, 6763; 13 (a) R. Abu-El-Halawa and J. C. Jochims, Chem. Ber., 1983,
(i) W.-X. Zhang, M. Nishiura and Z. Hou, Chem. – Eur. J.,
2007, 13, 4037; ( j) W.-X. Zhang, D. Li, Z. Wang and Z. Xi,
Organometallics, 2009, 28, 882; (k) C. Alonso-Moreno,
F. Carrillo-Hermosilla, A. Garcés, A. Otero, I. López-Solera,
A. M. Rodríguez and A. Antiñolo, Organometallics, 2010, 29,
2789; (l) D. Li, J. Guang, W.-X. Zhang, Y. Wang and Z. Xi,
Org. Biomol. Chem., 2010, 8, 1816; (m) S. Pottabathula and
B. Royo, Tetrahedron Lett., 2012, 53, 5156.
116, 1834; (b) R. Bossio, S. Marcaccini and R. Pepino,
Tetrahedron Lett., 1995, 36, 2325; (c) R. Bossio,
S. Marcaccini and R. Pepino, J. Org. Chem., 1996, 61, 2202;
(d) A. R. Katritzky, B. Rogovoy, C. Klein, H. Insuasty,
V. Vvedensky and B. Insuasty, J. Org. Chem., 2001, 66, 2854;
(e) A. Czarna, B. Beck, S. Srivastava, G. M. Popowicz,
S. Wolf, Y. Huang, M. Bista, T. A. Holak and A. Dömling,
Angew. Chem., Int. Ed., 2010, 49, 5352; (f) T.-H. Zhu,
S.-Y. Wang, T.-Q. Wei and S.-J. Ji, Adv. Synth. Catal., 2015,
357, 823; (g) Z.-Y. Gu, Y. Liu, F. Wang, X. Bao, S.-Y. Wang
and S.-J. Ji, ACS Catal., 2017, 7, 3893.
5 For selected examples, see: (a) C. Levallet, J. Lerpiniere and
S. Y. Ko, Tetrahedron, 1997, 53, 5291; (b) S. Cunha, B. R. de
Lima and A. R. de Souza, Tetrahedron Lett., 2002, 43, 49;
(c) D. H. O’Donovan and I. Rozas, Tetrahedron Lett., 2011, 14 For selected examples, see: (a) H.-O. Kim, F. Mathew and
52, 4117; (d) B. Kelly and I. Rozas, Tetrahedron Lett., 2013,
54, 3982.
6 Y. F. Yong, J. A. Kowalski and M. A. Lipton, J. Org. Chem.,
1997, 62, 1540.
C. Ogbu, Synlett, 1999, 193; (b) T. Suhs and B. König, Chem.
– Eur. J., 2006, 12, 8150; (c) E. Tassoni, F. Giannessi,
T. Brunetti, P. Pessotto, M. Renzulli, M. Travagli,
S. Rajamäki, S. Prati, S. Dottori, F. Corelli, W. Cabri,
P. Carminati and M. Botta, J. Med. Chem., 2008, 51, 3073.
7 For selected examples, see: (a) B. R. Linton, A. J. Carr,
B. P. Orner and A. D. Hamilton, J. Org. Chem., 2000, 65, 15 For selected examples, see: (a) X. Bi, C. Lopez, C. J. Bacchi,
1566; (b) M. Li, L. J. Wilson and D. E. Portlock, Tetrahedron
Lett., 2001, 42, 2273; (c) D. S. Ermolat’ev, J. B. Bariwal,
H. P. L. Steenackers, S. C. J. De Keersmaecker and E. V. Van
der Eycken, Angew. Chem., Int. Ed., 2010, 49, 9465.
8 For selected examples, see: (a) A. Porcheddu, L. D. Luca
and G. Giacomelli, Synlett, 2009, 3368; (b) P. S. Dangate
and K. G. Akamanchi, Tetrahedron Lett., 2012, 53, 6765;
D. Rattendi and P. M. Woster, Bioorg. Med. Chem. Lett.,
2006, 16, 3229; (b) L. Zhang, R. Sathunuru, T. Luong,
V. Melendez, M. P. Kozar and A. J. Lin, Bioorg. Med. Chem.,
2011, 19, 1541; (c) P. J. Klein, J. A. M. Christiaans,
A. Metaxas, R. C. Schuit, A. A. Lammertsma, B. N. M. van
Berckel and A. D. Windhorst, Bioorg. Med. Chem., 2015, 23,
1189.
(c) S. Wangngae, M. Pattarawarapan and W. Phakhodee, 16 (a) J. P. Ferris, C.-H. Huang and W. J. Hagan Jr., Nucleosides
Synlett, 2015, 1121.
Nucleotides, 1989, 8, 407; (b) Y.-Q. Wu, S. K. Hamilton,
D. E. Wilkinson and G. S. Hamilton, J. Org. Chem., 2002,
67, 7553; (c) V. D. Jadhav and F. P. Schmidtchen, J. Org.
Chem., 2008, 73, 1077; (d) A. Turočkin, R. Honeker,
W. Raven and P. Selig, J. Org. Chem., 2016, 81, 4516.
17 Application of NCS led to the corresponding succinimidyl
analogue of 5a, however, in lower isolated yield (51%). On
the other hand, no desired product was observed by means
of NBS or NIS.
9 For selected examples, see: (a) A. Miller and J. J. Bischoff,
Synthesis, 1986, 777; (b) C. A. Maryanoff, R. C. Stanzione,
J. N. Plampin and J. E. Mills, J. Org. Chem., 1986, 51, 1882;
(c) N. Srinivasan and K. Ramadas, Tetrahedron Lett., 2001,
42, 343.
10 For
a general review, see: (a) A. R. Katritzky and
B. V. Rogovoy, ARKIVOC, 2005, 49. For selected examples, see:
(b) C. R. Rasmussen, F. J. Villani Jr., B. E. Reynolds,
J. N. Plampin, A. R. Hood, L. R. Hecker, S. O. Nortey, 18 In order to evaluate the effectiveness of the isolation pro-
A. Hanslin, M. J. Costanzo, R. M. Howse Jr. and
A. J. Molinari, Synthesis, 1988, 460; (c) K. Feichtinger, C. Zapf,
cedures, NMR yields obtained from crude reaction mix-
tures are also shown.
H. L. Sings and M. Goodman, J. Org. Chem., 1998, 63, 3804; 19 It should be noted that similar efficiencies were observed
(d) H.-J. Musiol and L. Moroder, Org. Lett., 2001, 3, 3859.
11 For a general review, see: S. Tahir, A. Badshah and
R. A. Hussain, Bioorg. Chem., 2015, 59, 39.
when hydrazine monohydrate was utilized, but the separ-
ation of the byproduct phthalhydrazide from N,N′-di-
substituted guanidines was tedious.
12 (a) C.-Y. Chen, H.-C. Lin, Y.-Y. Huang, K.-L. Chen, 20 The succinimidyl analogue of 5a (see ref. 17) could not be
J.-J. Huang, M.-Y. Yeh and F. F. Wong, Tetrahedron, 2010,
66, 1892; (b) R. E. Looper, T. J. Haussener and
J. B. C. Mack, J. Org. Chem., 2011, 76, 6967; (c) J. Li and
transformed to the desired N,N′-disubstituted guanidine 7a
by hydrazinolysis (MeNHNH2, MeCN) even at reflux
temperature.
L. Neuville, Org. Lett., 2013, 15, 6124; (d) J. Li, H. Wang, 21 P. G. M. Wuts, Greene’s Protective Groups in Organic
Y. Hou, W. Yu, S. Xu and Y. Zhang, Eur. J. Org. Chem., 2016, Synthesis, Wiley, Hoboken, 5th edn, 2014.
2388; (e) M. Baeten and B. U. W. Maes, Adv. Synth. Catal., 22 S. Scherbakow, J. C. Namyslo, M. Gjikaj and A. Schmidt,
2016, 358, 826.
Synlett, 2009, 1964.
This journal is © The Royal Society of Chemistry 2018
Org. Biomol. Chem.