C O M M U N I C A T I O N S
28 000 M-1 cm-1 is obtained. Thus, DAP-DNA conjugates exhibit
high fluorescence quantum yields along with a general red shift,
similar to the recently reported triazolylpyrene-DNA conjugates.35
spectra. This information is available free of charge via the Internet at
References
(1) Langhals, H. HelV. Chim. Acta 2005, 88, 1309–1343.
(2) Wu¨rthner, F. Chem. Commun. 2004, 1564–1579.
(3) Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J. J. Am. Chem.
Soc. 2007, 129, 15259–15278.
(4) Neuteboom, E. E.; Meskers, S. C. J.; Meijer, E. W.; Janssen, R. A. J.
Macromol. Chem. Phys. 2004, 205, 217–222.
(5) Wang, W.; Li, L. S.; Helms, G.; Zhou, H. H.; Li, A. D. Q. J. Am. Chem.
Soc. 2003, 125, 1120–1121.
(6) Ahrens, M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W. H.; Jones, B. A.;
Giaimo, J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski,
M. R. J. Am. Chem. Soc. 2004, 126, 8284–8294.
(7) Wang, H.; Kaiser, T. E.; Uemura, S.; Wu¨rthner, F. Chem. Commun. 2008,
1181–1183.
Figure 5. Normalized fluorescence spectra of 7 (blue), 11 (red), 7*8 (green),
and 11*12 (orange; ON concn: 1.5 µM each strand; 10 mM phosphate
buffer, pH 7.0, 100 mM NaCl; excitation wavelength: 370 nm).
(8) Bevers, S.; Schutte, S.; McLaughlin, L. W. J. Am. Chem. Soc. 2000, 122,
5905–5915.
(9) Wang, W.; Wan, W.; Zhou, H. H.; Niu, S. Q.; Li, A. D. Q. J. Am. Chem.
Soc. 2003, 125, 5248–5249.
(10) Zheng, Y.; Long, H.; Schatz, G. C.; Lewis, F. D. Chem. Commun. 2005,
4795–4797.
Table 3. Fluorescence Quantum Yields of Single Strands and
Duplexes (for Wavelengths see Supporting Information)
(11) Zheng, Y.; Long, H.; Schatz, G. C.; Lewis, F. D. Chem. Commun. 2006,
3830–3832.
ON
Φ
ON
Φ
ONs
Φ
ONs
Φ
(12) Lewis, F. D.; Zhang, L. G.; Kelley, R. F.; McCamant, D.; Wasielewski,
M. R. Tetrahedron 2007, 63, 3457–3464.
7
8
9
10
0.11
0.008
0.32
0.32
11
12
13
14
0.049
0.015
0.36
7*8
0.26
0.36
0.13
0.17
11*12
11*8
13*14
13*10
0.39
0.36
0.33
0.17
(13) Rahe, N.; Rinn, C.; Carell, T. Chem. Commun. 2003, 2119–2121.
(14) Clark, A. E.; Qin, C. Y.; Li, A. D. Q. J. Am. Chem. Soc. 2007, 129, 7586–
7595.
7*12
9*10
9*14
0.21
(15) Baumstark, D.; Wagenknecht, H. A. Angew. Chem., Int. Ed. 2008, 47, 2612–
2614.
(16) Wang, W.; Han, J. J.; Wang, L. Q.; Li, L. S.; Shaw, W. J.; Li, A. D. Q.
Nano Lett. 2003, 3, 455–458.
(17) Zhu, L. Y.; Wu, W. W.; Zhu, M. Q.; Han, J. J.; Hurst, J. K.; Li, A. D. Q.
J. Am. Chem. Soc. 2007, 129, 3524–3526.
(18) Giaimo, J. M.; Lockard, J. V.; Sinks, L. E.; Scott, A. M.; Wilson, T. M.;
Wasielewski, M. R. J. Phys. Chem. A 2008, 112, 2322–2330.
(19) Wagner, C.; Wagenknecht, H. A. Org. Lett. 2006, 8, 4191–4194.
(20) Bouquin, N.; Malinovskii, V. L.; Ha¨ner, R. Chem. Commun. 2008, 1974–
1976.
(21) Malakhov, A. D.; Skorobogatyi, M. V.; Prokhorenko, I. A.; Gontarev, S. V.;
Kozhich, D. T.; Stetsenko, D. A.; Stepanova, I. A.; Shenkarev, Z. O.; Berlin,
Y. A.; Korshun, V. A. Eur. J. Org. Chem. 2004, 1298–1307.
(22) Huang, T. H.; Chen, Y. J.; Lo, S. S.; Yen, W. N.; Mai, C. L.; Kuo, M. C.;
Yeh, C. Y. Dalton Trans. 2006, 2207–2213. (and references cited therein).
(23) Venkataramana, G.; Sankararaman, S. Eur. J. Org. Chem. 2005, 4162–
4166.
(24) Malinovskii, V. L.; Ha¨ner, R. Eur. J. Org. Chem. 2006, 3550–3553.
(25) Maeda, H.; Maeda, T.; Mizuno, K.; Fujimoto, K.; Shimizu, H.; Inouye,
M. Chem.sEur. J. 2006, 12, 824–831.
(26) Xiao, J. C.; Xu, J. L.; Cui, S.; Liu, H. B.; Wang, S.; Li, Y. L. Org. Lett.
2008, 10, 645–648.
(27) Langenegger, S. M.; Ha¨ner, R. Chem. Commun. 2004, 2792–2793.
(28) Langenegger, S. M.; Ha¨ner, R. ChemBioChem 2005, 6, 848–851.
(29) Langenegger, S. M.; Ha¨ner, R. Bioorg. Med. Chem. Lett. 2006, 16, 5062–
5065.
(30) Trkulja, I.; Ha¨ner, R. J. Am. Chem. Soc. 2007, 129, 7982–7989.
(31) Trkulja, I.; Ha¨ner, R. Bioconjugate Chem. 2007, 18, 289–292.
(32) Malinovskii, V. L.; Samain, F.; Ha¨ner, R. Angew. Chem., Int. Ed. 2007,
46, 4464–4467.
(33) Trkulja, I.; Biner, S. M.; Langenegger, S. M.; Ha¨ner, R. ChemBioChem
2007, 8, 25–27.
(34) Looser, V.; Langenegger, S. M.; Ha¨ner, R.; Hartig, J. S. Chem. Commun.
2007, 4357–4359.
(35) Werder, S.; Malinovskii, V. L.; Ha¨ner, R. Org. Lett. 2008, 10, 2011–2014.
(36) Grimshaw, J.; Trochagr, J. J. Chem. Soc., Perkin Trans. 1 1972, 1622–
1623.
(37) Recently, the isolation of the 1,6-isomer from an isomeric mixture has been
reported: Arai, R.; Uemura, S.; Irie, M.; Matsuda, K. J. Am. Chem. Soc.
2008, 130, 9371–9379.
(38) Shyamala, T.; Sankararaman, S.; Mishra, A. K. Chem. Phys. 2006, 330,
469–477.
(39) Benniston, A. C.; Harriman, A.; Howell, S. L.; Sams, C. A.; Zhi, Y. G.
Chem.sEur. J. 2007, 13, 4665–4674 (and references cited therein).
(40) For a recent example in which hysteresis is ascribed to hydrogen bonding
and hydrophobicity acting in a nonconcerted way, see: Sorrells, J. L.;
Menger, F. M. J. Am. Chem. Soc. 2008, 130, 10072–10073.
(41) Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism - Principles
and Applications; Wiley-VCH: New York, 2000.
Figure 6. Heating/cooling curves of hybrid 7*8, observed by fluorescence
measurement at 400 nm (monomer) and 520 nm (excimer); excitation: 385
nm; 1.5 + 1.5 µM; 10 mM phosphate buffer pH 7.0, 100 mM NaCl.
The excimer signal serves as a readout for TM determination
which is not possible by UV-vis spectroscopy as mentioned above.
This is demonstrated for hybrid 7*8, which was also analyzed by
UV-vis (Figure 3). With fluorescence detection, a TM of 74 °C is
obtained (Figure 6; see SI for 11*12 and unmodified duplex).
In conclusion, the synthesis of two isomeric dialkynylpyrene
phosphoramidites and their incorporation into oligonucleotides have
been demonstrated. The pyrene units show features that closely
resemble those of the well-known perylene bisimide dye PDI with
regard to its ability to self-organize within a DNA duplex. Thus,
the dialkynylpyrenes open the possibility to gain information on
structural details of DNA hybrids through characteristic absorption
patterns and CD signals. Similar to PDI, the alkynyl pyrenes have
high absorptivities in their S0-S1 transitions. In contrast to PDI,
however, dialkynylpyrenes exhibit significant monomer as well as
remarkably strong excimer fluorescence by formation of either intra-
or interstrand excimers. Considering the relative ease of synthesis
and the high quantum yields of the DNA conjugates, these building
blocks represent promising candidates for applications in diagnostic
tools like excimer-based molecular beacons, as well as for novel
DNA-based materials with special optical properties.
(42) Boiadjiev, S. E.; Lightner, D. A. Monatsh. Chem. 2005, 136, 489–508.
(43) Lewis, F. D.; Zhang, L. G.; Liu, X. Y.; Zuo, X. B.; Tiede, D. M.; Long,
H.; Schatz, G. C. J. Am. Chem. Soc. 2005, 127, 14445–14453.
(44) Ranasinghe, R. T.; Brown, T. Chem. Commun. 2005, 5487–5502.
(45) Cuppoletti, A.; Cho, Y. J.; Park, J. S.; Strassler, C.; Kool, E. T. Bioconjugate
Chem. 2005, 16, 528–534.
Acknowledgment. This work was supported by the Swiss
National Foundation (Grant 200020-117617).
(46) Venkatesan, N.; Seo, Y. J.; Kim, B. H. Chem. Soc. ReV. 2008, 37, 648–663.
Supporting Information Available: Synthetic procedures, analytical
details, additional melting curves, UV-vis, fluorescence and CD
JA806747H
9
J. AM. CHEM. SOC. VOL. 130, NO. 46, 2008 15287