Published on Web 10/23/2008
Iodine-Mediated Electrophilic Cyclization of
2-Alkynyl-1-methylene Azide Aromatics Leading to Highly
Substituted Isoquinolines and Its Application to the Synthesis
of Norchelerythrine
Dirk Fischer, Hisamitsu Tomeba, Nirmal K. Pahadi, Nitin T. Patil, Zhibao Huo, and
Yoshinori Yamamoto*
Department of Chemistry, Graduate School of Science, Tohoku UniVersity, Sendai 980-8578, Japan
Received July 10, 2008; E-mail: yoshi@mail.tains.tohoku.ac.jp
Abstract: The reaction of 2-alkynyl-1-methylene azide aromatics 1 with iodine and/or other iodium donors,
such as the Barluenga reagent (Py2IBF4/HBF4) and NIS, gave highly substituted cyclization products, namely,
the 1,3-disubstituted 4-iodoisoquinolines 2, in good to high yields. Not only simple 2-alkynyl benzyl azides
1a-j and their substituted analogues 1k-u and 6 but also heteroaromatic analogues, including pyridine 8,
pyrroles 10a-c, furane 10d, and thiophenes 10e-g, gave the corresponding isoquinoline derivatives in
excellent to allowable yields. Electron-donating and electron-accepting substituents on the aromatic ring
were equally tolerated, and either acidic or basic (or even neutral) reaction conditions, depending on the
reactivity of the substrate, could be applied to smoothly convert the azide starting materials into the desired
isoquinoline products in moderate to good yields. Limits were found only in connection with the substituent
at the alkyne terminus, where electron-neutral or electron-donating substituents are clearly favored. The
iodine-mediated electrophilic cyclization of 1 most probably proceeds through the iodonium ion intermediate
4 followed by nucleophilic cyclization of the azide and subsequent elimination of N2. This new methodology
was successfully applied to the short synthesis of norchelerythrine.
Introduction
synthesis, as well as for fine-tuning of the biological and/or
physical properties of those compounds for final application, a
Isoquinoline and heterocyclic pyridine derivatives are an
important class of alkaloids, commonly found in natural
products.1 Because of their biological activities, they are often
used as building blocks in pharmaceutical compounds.2 Fur-
thermore, they are utilized as chiral ligands for transition-metal
catalysts,3 and their iridium complexes are used in organic light-
emitting diodes.4 For delicate and sophisticated natural product
general and flexible approach to this class of heterocycles that
tolerates a wide variety of functional groups is highly desirable.
Although many methods for synthesizing isoquinoline ana-
logues are known, classic methods such as the Pomeranz-Fritsch
reaction have considerable drawbacks, including the use of
strong acids and elevated temperatures,5 which are not suitable
for sensitive substrates. For that reason, not all functional and
protecting groups are tolerated. In recent years, especially in
the laboratories of Larock and co-workers, new transition-metal
catalyzed reactions using phenyl acetylenes as starting materials
have been developed for the synthesis of substituted isoquino-
lines (Scheme 1).6 These reactions have proven to be extremely
efficient in the synthesis of a wide variety of 3,4-substituted
(1) Bentley, K. W. The Isoquinoline Alkaloids; Harwood Academic:
Amsterdam, 1998; Vol 1.
(2) Selected papers: (a) Dzierszinski, F.; Coppin, A.; Mortuaire, M.;
Dewally, E.; Slomianny, C.; Ameisen, J.-C.; DeBels, F.; Tomavo, S.
Antimicrob. Agents Chemother. 2002, 46, 3197–3207. (b) Kletsas, D.;
Li, W.; Han, Z.; Papadopoulos, V. Biochem. Pharmacol. 2004, 67,
1927–1932. (c) Mach, U. R.; Hackling, A. E.; Perachon, S.; Ferry,
S.; Wermuth, C. G.; Schwartz, J.-C.; Sokoloff, P.; Stark, H. Chem-
BioChem 2004, 5, 508–518. (d) Muscarella, D. E.; O’Brian, K. A.;
Lemley, A. T.; Bloom, S. E. Toxicol. Sci. 2003, 73, 66–73.
(3) Selected papers: (a) Sweetman, B. A.; Mu¨ller-Bunz, H.; Guiry, P. J.
Tetrahedron Lett. 2005, 46, 4643–4646. (b) Durola, F.; Sauvage, J.-
P.; Wenger, O. S. Chem. Commun. 2006, 171–173. (c) Lim, C. W.;
Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A. R.;
Hulmes, D. I.; Blacker, A. J. Org. Process Res. DeV. 2003, 7, 379–
384. (d) Alcock, N. W.; Brown, J. M.; Hulmes, G. I. Tetrahedron:
Asymmetry 1993, 4, 743–756.
(5) (a) Whaley, W. M.; Govindachari. T. R. In Organic Reactions; Adams,
R., Ed.; Wiley: New York, 1951; Vol. 6, pp 151-190. (b) Whaley,
W. M.; Govindachari, T. R. In Organic Reactions; Adams, R., Ed.;
Wiley: New York, 1951; Vol. 6, pp 74-150. (c) Gensler, W. J. In
Organic Reactions; Adams, R., Ed.; Wiley: New York, 1951; Vol. 6,
pp 191-206. (d) Bentley, K. W. Nat. Prod. Rep. 2005, 22, 249–268.
(6) Selected papers: (a) Maassarani, F.; Pfeffer, M.; Le Borgne, G.
J. Chem. Soc., Chem. Commun. 1987, 565–567. (b) Wu, G.; Geib, S.;
Rheingold, A. L.; Heck, R. F. J. Org. Chem. 1988, 53, 3238–3241.
(c) Girling, I. R.; Widdowson, D. A. Tetrahedron Lett. 1982, 23, 4281–
4284. (d) Roesch, K. R.; Zhang, H.; Larock, R. C. J. Org. Chem.
1998, 63, 5306–5307. (e) Roesch, K. R.; Zhang, H.; Larock, R. C. J.
Org. Chem. 2001, 66, 8042–8051. (f) Dai, G.; Larock, R. C. J. Org.
Chem. 2002, 67, 7042–7047. (g) Huang, Q.; Larock, R. C. J. Org.
Chem. 2003, 68, 980–988. (h) Hashmi, A. S. K.; Schaefer, S.; Woelfe,
M.; Diez Gil, C.; Fischer, P.; Laguna, A.; Blanco, M. C.; Gimeno,
M. C. Angew. Chem., In. Ed. 2007, 46, 6184–6187.
(4) Selected papers: (a) Fang, K.-H.; Wu, L.-L.; Huang, Y.-T.; Yang, C.-
H.; Sun, I.-W. Inorg. Chim. Acta 2006, 359, 441–450. (b) Liu, S.-J.;
Zhao, Q.; Chen, R.-F.; Deng, Y.; Fan, Q.-L.; Li, F.-Y.; Wang, L.-H.;
Huang, C.-H.; Huang, W. Chem. Eur. J. 2006, 12, 4351–4361. (c)
Zhao, Q.; Liu, S.; Shi, M.; Wang, C.; Yu, M.; Li, L.; Li, F.; Yi, T.;
Huang, C. Inorg. Chem. 2006, 45, 6152–6160. (d) Tsuboyama, A.;
Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.;
Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno,
K. J. Am. Chem. Soc. 2003, 125, 12971–12979.
9
15720 J. AM. CHEM. SOC. 2008, 130, 15720–15725
10.1021/ja805326f CCC: $40.75
2008 American Chemical Society