D. Rondeau et al.
account. Byreportingtothecommentsoftheintroductionsection,
the probing of such ions downstream the Mach disk should lead
rather to a thermal-like internal energy distribution as previously
described for the ESI source of the PE SCIEX API 165 quadrupole
mass spectrometer.[27] The JMS 700 ESI source used for this study
presents the same characteristics as the PE SCIEX. By focusing
onto the differences in the analyzer used for these studies, one
can report the works of Anderson et al.[61] They have shown that
in a quadrupole mass spectrometer acting with an ESI source, the
direct current field between the quadrupole rods is responsible to
a radially directed acceleration of the parent ions. The broadening
in kinetic energy is then converted in a broadening in internal
energy by collisions with the neutrals due to the jet formation in
the expansion area of the ESI source. In the case of the SY method,
some substituted benzylpyridinium cations should be lost into
the analyzer as parent ions, whereas the benzylium ions produced
in the source are more likely to survive in the quadrupole. Such
an interpretation involving the analyzer rather than the source
can find a confirmation through the results obtained by Gabelica
et al.[30] In this paper devoted to the internal energy distribution
of benzylpyridinium ions emitted from a nano-electrospray source
interfaced with TOF analyzer, distributions remain narrow what-
ever the gas pressure in the first pumping stages, the voltage
and temperature conditions. The conclusions of the authors con-
cerning the fact that ‘low temperature–high acceleration voltage’
conditions are not equivalent to ‘high temperature–low accelera-
tion voltages’ can be applied to the results shown in Fig. 11, in the
case of the sector mass spectrometer.
[11] V. Gabelica, E. De Pauw. Internal energy and fragmentation of ions
produced in electrospray sources. Mass Spectrom. Rev. 2005, 24,
566.
[12] N. Potier, P. Barth, D. Tritsch, J.-F. Biellmann, A. Van Dorsselaer.
Study of non-covalent enzyme–inhibitor complexes of aldose
reductase by electrospray mass spectrometry. Eur.J.Biochem. 1997,
243, 274.
[13] H. Rogniaux, A. Van Dorsselaer, P. Barth, J.-F. Biellmann,
J. Barbanton, M. van Zandt, B. Chevrier, E. Howard, A. Mitschler,
N. Potier, L. Urzhumtseva, D. Moras, A. Podjarny. Binding of aldose
reductase inhibitors: correlation of crystallographic and mass
spectrometricstudies – asystemforX-raycrystallographyandNMR.
J. Am. Soc. Mass Spectrom. 1999, 10, 635.
[14] R. D. Smith, C. J. Barinaga. Internal energy effects in the collision-
induced dissociation of large biopolymer molecular ions produced
by electrospray ionization tandem mass spectrometry of
cytochrome c. Rapid Commun. Mass Spectrom. 1990, 4, 54.
[15] G. Wang, R. B. Cole. Solution, gas-phase, and instrumental
parameter influences on charge-state distributions in electrospray
ionization mass spectrometry. In Electrospray Ionization Mass
Spectrometry: Fundamentals, Instrumentation
& Applications,
R. B. Cole (Ed.). John Wiley & Sons: New York, 1997, 137.
[16] A. Schmidt, U. Bahr, M. Karas. Influence of pressure in the first
pumping stage on analyte desolvation and fragmentation in nano-
ESI MS. Anal. Chem. 2001, 73, 6040.
[17] O. Lapre´vote, P. Ducrot, C. Thal, L. Serani, B. C. Das. Stereochemistry
of electrosprayed ions. Indoloquinolizidine derivatives. J. Mass
Spectrom. 1996, 31, 1149.
[18] W. D. Van Dongen, J. I. T. van Wijk, B. N. Green, W. Heerma,
J. Haverkamp. Comparison between collision induced dissociation
ofelectrosprayedprotonatedpeptidesintheup-frontsourceregion
and in a low-energy collision cell. Rapid Commun. Mass Spectrom.
1999, 13, 1712.
[19] B. B. Schneider, D. D. Y. Chen. Collision-induced dissociation of
ions within the orifice-skimmer region of an electrospray mass
spectrometer. Anal. Chem. 2000, 72, 791.
[20] L. Serani, D. Lemaire, O. Lapre´vote. Collision efficiency in an
electrospray source interfaced with a magnetic mass spectrometer.
Int. J. Mass Spectrom. 2002, 219, 403.
Acknowledgements
The authors are grateful to Dr Lionel Sanguinet from the University
of Angers (CIMA UMR CNRS 6200) for the gift of benzylpyridinium
salts. This work was performed using HPC resources from GENCI-
CINES/IDRIS (Grant 2009-x2009085117) and CCIPL (Centre de
Calcul Intensif des Pays de la Loire).
[21] D. J. Douglas, J. French. Collisional focusing effects in radio
frequency quadrupoles. J. Am. Soc. Mass Spectrom. 1992, 3, 398.
[22] W. Weinmann, M. Stoertzel, S. Vogt, M. Svoboda, A. Schreiber.
Tuning compounds for electrospray ionization/in-source CID and
mass spectra library searching. J. Mass Spectrom. 2001, 36, 1013.
[23] L. Drahos, K. Ve´key. Determination of the thermal energy and its
distribution in peptides. J. Am. Soc. Mass Spectrom. 1999, 10, 323.
[24] Z. Taka´ts, L. Drahos, G. Schlosser, K. Ve´key. Feasibility of formation
of hot ions in electrospray. Anal. Chem. 2002, 74, 6427.
[25] L. Drahos, R. M. A. Heeren, C. Collette, E. De Pauw, K. Ve´key. Thermal
energy distribution observed in electrospray ionization. J. Mass
Spectrom. 1999, 34, 1373.
[26] C. Collette, E. De Pauw. Calibration of the internal energy
distribution of ions produced by electrospray. Rapid Commun.
Mass Spectrom. 1998, 12, 165.
[27] C. Collette, L. Drahos, E. De Pauw, K. Ve´key. Comparison of the
internal energy distributions of ions produced by different
electrospray sources. Rapid Commun. Mass Spectrom. 1998, 12,
1673.
References
[1] K. Ve´key Internal energy effects in mass spectrometry. J. Mass
Spectrom. 1996, 31, 445.
[2] T. Baer, P. M. Mayer. Statistical Rice–Ramsperger–Kassel–Marcus
quasiequilibrium theory calculations in mass spectrometry. J. Am.
Soc. Mass Spectrom. 1997, 8, 103.
[3] C. M. Whitehouse, R. N. Dreyer, M. Yamashita, J. B. Fenn. Electro-
spray interface for liquid chromatographs and mass spectrometers.
Anal. Chem. 1985, 57, 675.
[4] S. J. Gaskell. Electrospray: principles and practice. J. Mass Spectrom.
1997, 32, 677.
[5] P. Kebarle. A brief overview of the present status of the mechanisms
involvedinelectropsraymassspectrometry. J.MassSpectrom. 2000,
35, 804.
[6] R. B. Cole. Some tenets pertaining to electrospray ionization mass
spectrometry. J. Mass Spectrom. 2000, 35, 763.
[28] A. G. Harrison. Fragmentation reaction of alkylphenylammonium
ions. J. Mass Spectrom. 1999, 34, 1253.
[29] X. Guo, M. C. Duursma, P. G. Kistemaker, N. M. M. Nibbering,
K. Ve´key, L. Drahos, R. M. A. Heeren. Manipulating internal energy
of protonated biomolecules in electrospray ionization Fourier
transform ion cyclotron resonance mass spectrometry. J. Mass
Spectrom. 2003, 38, 597.
[7] A. P. Bruins. ESI source design and dynamic rang considerations.
In Electrospray Ionization Mass Spectrometry: Fundamentals,
Instrumentation & Applications, R. B. Cole (Ed.). John Wiley & Sons:
New York, 1997, 107.
[30] V. Gabelica, E. De Pauw, M. Karas. Influence of the capillary
temperature and the source pressure on the internal energy
distribution of electrosprayed ions. Int. J. Mass Spectrom. 2004,
231, 189.
[8] R. Campargue. Progress in overexpanded supersonic jets and
skimmed molecular beams in free-jet zones of silence. J. Phys.
Chem. 1984, 88, 4466.
[9] J. B. Fenn. Mass spectrometric implications of high-pressure ion
sources. Int. J. Mass Spectrom. 2000, 200, 459.
[31] F. He, J. Ramirez, B. A. Garcia, C. B. Lebrilla. Differentially heated
capillary for thermal dissociation of noncovalently bound
complexes produced by electrospray ionization. Int. J. Mass
Spectrom. 1999, 182(183), 261.
[32] A. Schmidt, U. Bahr, M. Karas. Influence of pressure in the first
pumping stage on analyte desolvation and fragmentation in nano-
ESI MS. Anal. Chem. 2001, 73, 6040.
[10] T. R. Covey, B. A. Thomson, B. B. Schneider. Atmospheric pressure
ion sources. Mass Spectrom. Rev. 2009, 28, 870.
c
wileyonlinelibrary.com/journal/jms
Copyright ꢀ 2011 John Wiley & Sons, Ltd.
J. Mass. Spectrom. 2011, 46, 100–111