LETTER
Iminophosphorane-Mediated Synthesis of Cyclic Guanidines
2341
see: O’Neil, I. A.; Thompson, S.; Murray, C. L.; Kalindjian,
S. B. Tetrahedron Lett. 1998, 39, 7787.
concentrations up to 1 mg/mL. Since NA22598A1 com-
pletely inhibits cell growth under these conditions,2 our
data indicate that one or more of the omitted functional
groups on the decanoic acid chain are essential for activi-
ty. Alternatively, 17 may possess the wrong stereochem-
istry at C-9 in relation to the natural product.
(9) Representative Procedure: To a solution of 6 (0.20 g, 0.91
mmol) in anhyd CH2Cl2 (10 mL) under nitrogen was added
DPPB (0.213 g, 0.50 mmol). The reaction mixture was
stirred at r.t. for 22 h, cooled to –20 °C and tosyl isocyanate
(144 mL, 0.94 mmol) was slowly added. The reaction
mixture was allowed to warm to r.t. and stirred for 22 h.
Removal of the solvent in vacuo and subsequent column
chromatography (8% EtOAc in CH2Cl2) gave 7 (0.24 g,
71%) as a white solid.
To conclude, a new mild methodology for the synthesis
of unsymmetrically substituted 2-iminoimidazolidines
has been devised. It has been shown to be suitable for the
preparation of simplified analogues of NA22598A1. Work
to fully define the scope of this reaction and to apply it to
the synthesis of other NA22598A1 derivatives will be the
subject of future studies.
(10) Selected Spectroscopic Data: 7: mp 152–153 ºC (from
CH2Cl2–Et2O). 1H NMR (400 MHz, CDCl3): d = 7.81 (d, J =
8.3 Hz, 2 H, ArH), 7.71 (s, 1 H, NH), 7.29–7.37 (m, 5 H,
ArH), 7.22 (d, J = 8.3 Hz, 2 H, ArH), 5.25 (s, 2 H, OCH2Ph),
3.90–3.95 (m, 2 H), 3.60–3.65 (m, 2 H), 2.40 (s, 3 H, Me).
13C NMR (100.5 MHz, CDCl3): d = 154.1 (C), 150.8 (C),
142.6 (C), 139.7 (C), 135.1 (C), 129.3 (CH), 128.6 (CH),
128.3 (CH), 128.0 (CH), 126.3 (CH), 68.5 (CH2), 43.9
(CH2), 39.9 (CH2), 21.5 (Me). IR (neat): 3315, 2919, 1753,
1621 cm–1. MS (FAB+): m/z = 374 [M + H+], 330. HRMS
(FAB+): m/z [M + H+] calcd for C18H20N3O4S: 374.1175;
found: 374.1179. 16: [a]D24 47 (c = 1.2, EtOH). 1H NMR
(400 MHz, CDCl3): d = 7.67–7.69 (m, 3 H, 2 × ArH, NH),
7.27–7.33 (m, 10 H, ArH), 7.21–7.25 (m, 3 H, 2 × ArH, NH),
6.54 (br s, 1 H, NH), 5.19 (d, J = 12.3 Hz, 1 H, OCHHPh),
5.11 (d, J = 12.3 Hz, 1 H, OCHHPh), 5.09 (d, J = 12.3 Hz, 1
H, OCHHPh), 5.02 (d, J = 12.3 Hz, 1 H, OCHHPh), 4.53–
4.61 (m, 1 H, a-CH Ala), 4.43 (dd, J = 5.0, 8.5, Hz, 1 H, a-
CH Val), 4.16–4.19 (m, 1 H, H-9), 3.56 (t, J = 9.4 Hz, 1 H,
H-10), 3.22 (d, J = 10.8 Hz, 1 H, H-10¢), 2.28 (s, 3 H, Me),
2.03–2.10 (m, 3 H, H-2, b-CH Val), 1.58–1.70 (m, 1 H, H-
8), 1.42–1.55 (m, 3 H, H-8¢, 2 × H-3), 1.25 (d, J = 7.0 Hz, 3
H, b-Me Ala), 1.05–1.20 (m, 8 H, 2 × H-4, 2 × H-5, 2 × H-6,
2 × H-7), 0.81 (d, J = 6.8 Hz, 3 H, g-Me Val), 0.78 (d, J = 6.8
Hz, 3 H, g-Me Val). 13C NMR (100.5 MHz, CDCl3): d =
173.1 (C), 172.8 (C), 171.5 (C), 153.7 (C), 150.9 (C), 142.5
(C), 139.8 (C), 135.4 (C), 135.1 (C), 129.3 (CH), 128.6
(CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.0 (CH),
126.2 (CH), 68.4 (CH2), 66.9 (CH2), 57.4 (CH), 56.0 (CH),
48.6 (CH), 45.2 (CH2), 36.4 (CH2), 33.0 (CH2), 30.9 (CH),
29.1 (CH2), 29.0 (CH2), 25.5 (CH2), 24.2 (CH2), 21.5 (Me),
19.1 (Me), 18.3 (Me), 17.7 (Me). IR (neat): 3400, 3281,
3061, 2925, 2885, 1717, 1631, 1616, 1541 cm–1. MS
(FAB+): m/z = 776 [M + H+], 338. HRMS (FAB+): m/z [M +
H+] calcd for C41H54N5O8S: 776.3693; found: 776.3692.
(11) This data has been deposited at the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge,
CB2 1EZ, UK. Deposition number: CCDC 679310.
(12) The enantiomers were separated by analytical HPLC on a
chiralpak OD-H column (3% IPA in n-hexanes, flow rate =
0.5 mL/min, l = 245 nm); tR [(S)-9] = 12.5 min, tR [(R)-9] =
14.8 min.
Acknowledgment
The University of Warwick is gratefully acknowledged for financial
support. We are indebted to EPSRC (EP/C007999/1) for the provi-
sion of mass spectrometers.
References and Notes
(1) (a) Kuwahara, A.; Nishikiori, T.; Shimada, N.; Nakagawa,
T.; Fukazawa, H.; Mizuno, S.; Uehara, Y. J. Antibiot. 1997,
50, 712. (b) Nishikiori, T.; Kuwahara, A.; Uehara, Y.;
Fukazawa, S.; Mizuno, S. Jpn. Kokai Tokkyo Koho, Jpn.
Patent, JP 09048791, 1997.
(2) Kawada, M.; Kuwahara, A.; Nishikiori, T.; Mizuno, S.;
Uehara, Y. Exp. Cell Res. 1999, 249, 240.
(3) Recently, K01-0509 B and guadinomines A–C were
isolated. These compounds all possess a carbamoylated 2-
iminoimidazolidine. Moreover, guadinomine B is strikingly
similar to NA22598A1, see: Tsuchiya, S.; Sunazuka, T.;
Hirose, T.; Mori, R.; Tanaka, T.; Iwatsuki, M.; Omura, S.
Org. Lett. 2006, 8, 5577; and references therein.
(4) For other recent approaches to 2-iminoimidazolidines, see:
(a) Dardonville, C.; Goya, P.; Rozas, I.; Alsasua, A.; Martín,
M. I.; Borrego, M. J. Bioorg. Med. Chem. 2000, 8, 1567.
(b) Isobe, T.; Fukuda, K.; Yamaguchi, K.; Seki, H.;
Tokunaga, T.; Ishikawa, T. J. Org. Chem. 2000, 65, 7779.
(c) Matosiuk, D.; Fidecka, S.; Antkiewicz-Michaluk, L.;
Dybala, I.; Koziol, A. E. Eur. J. Med. Chem. 2001, 36, 783.
(d) Dennis, M.; Hall, L. M.; Murphy, P. J.; Thornhill, A. J.;
Nash, R.; Winters, A. L.; Hursthouse, M. B.; Light, M. E.;
Horton, P. Tetrahedron Lett. 2003, 44, 3075. (e) Abou-
Jneid, R.; Ghoulami, S.; Martin, M.-T.; Dau, E. T. H.;
Travert, N.; Al-Mourabit, A. Org. Lett. 2004, 6, 3933.
(f) Sanière, L.; Leman, L.; Bourguignon, J.-J.; Dauban, P.;
Dodd, R. H. Tetrahedron 2004, 60, 5889. (g) Kim, M.;
Mulcahy, J. V.; Espino, C. G.; Du Bois, J. Org. Lett. 2006,
8, 1073.
(5) For a review, see: Bräse, S.; Gil, C.; Knepper, K.;
Zimmermann, V. Angew. Chem. Int. Ed. 2005, 44, 5188.
(6) (a) Molina, P.; Conesa, C.; Velasco, D. Synthesis 1996,
1459. (b) See also: Palacios, F.; Alonso, C.; Aparicio, D.;
Rubiales, G.; de los Santos, J. M. Tetrahedron 2007, 63,
523.
(7) Cooper, R. G.; Etheridge, C. J.; Stewart, L.; Marshall, J.;
Rudginsky, S.; Cheng, S. H.; Miller, A. D. Chem. Eur. J.
1998, 4, 137; and references therein.
(13) For example, see: Hodgkinson, T. J.; Shipman, M. Synthesis
1998, 1141; and references cited therein.
(14) Synthesised by coupling commercially available N-Boc-L-
alanine with L-valine benzyl ester (EDC, HOBt, Et3N,
CH2Cl2, 16 h, 90%).
(15) This contamination arises from the fact that solid NH4Cl is
used to quench the dissolving metal reduction and TFA is
used as a co-solvent in the subsequent purification by silica
gel chromatography. The effective molarity of 17 in D2O,
from which the yield could be estimated, was determined by
adding known quantities of 1,4-dioxane to the sample and
subsequent quantification of the dioxane/17 ratio by 1H
NMR integration.
(8) Bis(diphenylphosphino)ethane has been used to address
similar problems in Staudinger and Mitsunobu reactions,
Synlett 2008, No. 15, 2339–2341 © Thieme Stuttgart · New York