2581
N. Tago et al.
Letter
Synlett
Table 2 Conversion and Isolated Yields of Reagents Using the Micro-
fluidic System
Cummins, L. L.; Freier, S.; Greig, M. J.; Guinosso, C. J.; Lesnik, E.;
Manalili, S. M.; Mohan, V.; Owens, S.; Ross, B. R.; Sasmor, H.;
Wancewicz, E.; Weiler, K.; Wheeler, P. D.; Cook, P. D. J. Med.
Chem. 1996, 39, 5100. (c) Prakash, T. P.; Kawasaki, A. M.; Lesnik,
E. A.; Owens, S. R.; Manoharan, M. Org. Lett. 2003, 5, 403.
(d) Oeda, Y.; Iijima, Y.; Taguchi, H.; Ohkubo, A.; Seio, K.; Sekine,
M. Org. Lett. 2009, 11, 5582.
Entry
Reagent
Product
Isolated yield (%)
1
2
3
4
5
benzoyl chloride
toluoyl chloride
p-anisoyl chloride
isobutyryl chloride
benzoyl chloride
3a
3b
3c
3d
3e
80
80
69
89
25
(4) Markiewicz, W. T. J. Chem. Res., Miniprint 1979, 173.
(5) (a) Inoue, H.; Hayase, Y.; Imura, A.; Iwai, S.; Miura, K.; Ohtsuka,
E. Nucleic Acids Res. 1987, 15, 6131. (b) Yamada, T.; Okaniwa, N.;
Saneyoshi, H.; Ohkubo, A.; Seio, K.; Nagata, T.; Aoki, Y.; Takeda,
S.; Sekine, M. J. Org. Chem. 2011, 76, 3042. (c) Saneyoshi, H.;
Seio, K.; Sekine, M. J. Org. Chem. 2005, 70, 10453.
(6) (a) Beijer, B.; Grøtli, M.; Douglas, M. E.; Sproat, B. S. Nucleosides
Nucleotides 1994, 13, 1905. (b) Zhou, X.-X.; Chattopadhyaya, J.
Tetrahedron 1986, 42, 5149.
In conclusion, we have developed a new microfluidic
method for the N3-protection of uridine derivatives by the
PT reaction, which was accelerated by the insertion of HPLC
guard columns into the flow system.19 We found that ben-
zoylation succeeded with 83% conversion within a resi-
dence time (i.e., reaction time) of 1.9 seconds with the
guard column, whereas the yield was 65% without the col-
umn. Our data clearly show the usefulness of attaching a
microporous guard column to a microflow reaction system
for the synthesis of N3-protected uridine derivatives. This
microfluidic method may be applied to other liquid–liquid
PT reactions such as alkylation7 and β-glycosilation.20 As a
potential application, a one-pot sequential synthesis21 such
as a 2′-O-modification following base protection using this
microfluidic method is considered to be viable.
(7) Sekine, M. J. Org. Chem. 1989, 54, 2321.
(8) Yadav, G. D.; Jadhav, Y. B. J. Mol. Catal. 2003, 192, 41.
(9) Hisamoto, H.; Saito, T.; Tokeshi, M.; Hibara, A.; Kitamori, T.
Chem. Commun. 2001, 2662.
(10) (a) Guillot, P.; Colin, A. Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys. 2005, 72, 066301. (b) Zhao, Y.; Chen, G.; Yuan, Q. AIChE J.
2006, 52, 4052.
(11) (a) Taha, T.; Cui, Z. F. Chem. Eng. Sci. 2004, 59, 1181. (b) Burns, J.
R.; Ramshaw, C. Lab Chip 2001, 1, 10.
(12) Ueno, M.; Hisamoto, H.; Kitamori, T.; Kobayashi, S. Chem.
Commun. 2003, 936.
(13) Reichart, B.; Kappe, C. O.; Glasnov, T. N. Synlett 2013, 24, 2393.
(14) Jovanović, J.; Rebrov, E. V.; Nijhuis, T. A.; Hessel, V.; Schouten, J.
C. Ind. Eng. Chem. Res. 2010, 49, 2681.
(15) (a) Yamada, Y. M. A.; Watanabe, T.; Torii, K.; Uozumi, Y. Chem.
Commun. 2009, 5594. (b) Kobayashi, J.; Mori, Y.; Okamoto, K.;
Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. Science 2004,
304, 1305. (c) Fukuyama, T.; Rahman, T.; Sato, M.; Ryu, I. Synlett
2008, 151. (d) Noël, T.; Musacchio, A. J. Org. Lett. 2011, 13, 5180.
(16) Opalka, S. M.; Park, J. K.; Longstreet, A. R.; McQuade, D. T. Org.
Lett. 2013, 15, 996.
Acknowledgment
This work was supported by the Japan Society for the Promotion of
Science grant No. 21106001 and grant No. 15H01062 and grant No.
26810086.
(17) Aota, A.; Hibara, A.; Kitamori, T. Anal. Chem. 2007, 79, 3919.
(18) Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96.
(19) General procedure for the preparation of organic solution:
3′,5′-O-(1,1,3,3-Tetraisopropyldisiloxane-1,3-diyl)uridine (1a;
730 mg, 1.46 mmol) and an appropriate acid chloride (BzCl,
AnCl, TolCl, iPrCOCl; 1.90 mmol) were dissolved in anhydrous
dichloromethane (30 mL).
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
General procedure for the preparation of aqueous solution:
Sodium carbonate (4.24 g, 40 mmol) and tetrabutylammonium
bromide (645 mg, 2 mmol) were dissolved in degassed H2O (200
mL).
References and Notes
(1) (a) Deleavey, G. F.; Damha, M. J. Chem. Biol. 2012, 19, 937.
(b) Sharma, V. K.; Sharma, R. K.; Singh, S. K. MedChemComm
2014, 5, 1454. (c) Ma, H.; Liu, J.; Ali, M. M.; Mahmood, M. A. I.;
Labanieh, L.; Lu, M.; Iqbal, S. M.; Zhang, Q.; Zhao, W.; Wan, Y.
Chem. Soc. Rev. 2015, 44, 1240.
(2) (a) Li, J.; Tan, S.; Kooger, R.; Zhang, C.; Zhang, Y. Chem. Soc. Rev.
2014, 43, 506. (b) Dong, H.; Lei, J.; Ding, L.; Wen, Y.; Ju, H.;
Zhang, X. Chem. Rev. 2013, 113, 6207. (c) Navani, N. K.; Li, Y.
Curr. Opin. Chem. Biol. 2006, 10, 272. (d) Yan, L.; Zhou, J.; Zheng,
Y.; Gamson, A. S.; Roembke, B. T.; Nakayama, S.; Sintim, H. O.
Mol. BioSyst. 2014, 10, 970.
Procedure for the synthesis of 3c: The flow system was con-
structed as shown in Figure 1 using a guard column of monolith
2 μm (Table 1 and Table S1, entry 6). The organic solution and
the aqueous solution were flowed for 15 min with the flow rate
of 0.43 mL min–1 and 1.5 mL min–1, respectively. The organic
solution was washed three times with saturated aqueous
sodium bicarbonate and then dried over sodium sulfate. The
resulting solution was evaporated under reduced pressure. The
residue was dissolved in 1,2-dichloroethane (3 mL) and the
solution was heated at 60 °C for 15 min. The resulting solution
was evaporated under reduced pressure and then the residue
was purified by column chromatography on silica gel (EtOAc–
hexane, 20 to 30%) to give the product (149 mg, 69%) as a white
powder. The analytical data of 3c: 1H NMR (500 MHz, CDCl3): δ
(3) (a) Geary, R. S.; Watanabe, T. A.; Truong, L.; Freier, S.; Lesnik, E.
A.; Sioufi, N. B.; Sasmor, H.; Manoharan, M.; Levin, A. A. J. Phar-
macol. Exp. Ther. 2001, 296, 890. (b) Griffey, R. H.; Monia, B. P.;
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2578–2582