Marco Bandini et al
COMMUNICATIONS
1368 (w), 1600 (w), 1680 (m), 3039 (w), 3357 (m) cmꢀ1; anal.
calcd. for C22H25NO: C 82.72, H 7.89, N 4.38; found: C 82.74,
H 7.83, N 4.38.
[2] P. Espeel, R. Parton, H. Toufar, J. Martens, W. Hˆlder-
ich, P. Jacobs, Zeolite Effects in Organic Catalysis, In:
A. Vaccari, Applied Clay Science 1999, 14, 161 198.
[3] K. Tanabe, W. F. Hˆlderich, Appl. Catal. A: Gen. 1999,
181, 399 434.
[4] a) M. Bandini, M. Fagioli, P. Melchiorre, M. Melloni, A.
Umani-Ronchi, Tetrahedron Lett. 2003, 44, 5843 5846;
b) D. A. Evans, K. A. Scheidt, K. R. Fandrick, H. Wai
Lam, J. Wu, J. Am. Chem. Soc. 2003, 125, 10780
10781; c) M. Bandini, A. Melloni, S. Tommasi, A. Uma-
ni-Ronchi, Helv. Chim. Acta 2003, 86, 3753 3763; d) M.
Bandini, M. Melloni, A. Umani-Ronchi, Angew. Chem.
2004, 116, 560 566; Angew. Chem. Int. Ed. 2004, 43,
550 556, and references cited therein.
[5] a) M. Bandini, P. Melchiorre, A. Melloni, A. Umani-
Ronchi, Synthesis 2002, 1110 1114; b) M. Bandini,
P. G. Cozzi, M. Giacomini, P. Melchiorre, S. Selva, A.
Umani-Ronchi, J. Org. Chem. 2002, 67, 3700 3704;
c) M. Bandini, M. Fagioli, A. Melloni, A. Umani-Ronchi,
Synthesis 2003, 397 402; d) M. Agnusdei, M. Bandini, A.
Melloni, A. Umani-Ronchi, J. Org. Chem. 2003, 68,
7126 7129.
1-(4-Chlorophenyl)-3-(1H-2-methylindol-3-yl)-butan-
1-one (11)
Brown viscous oil. Yield: 81%; Rf ¼0.35 (c-Hex/Et2O, 85:15);
1H NMR (CDCl3, TMS, 200 MHz): d¼1.51 (3H, d, J¼
7.0 Hz), 2.38 (3H, s), 3.30 (1H, dd, J¼7.4, 16.0 Hz), 3.54 (1H,
dd, J¼6.6, 16.2 Hz), 3.73 (1H, pq, J¼7.0 Hz), 7.06 7.14 (2H,
m), 7.23 7.28 (2H, m), 7.33 (2H, dd, J¼1.8, 8.4 Hz), 7.65
7.69 (1H, m), 7.79 (2H, dd, J¼1.8, 8.4 Hz); 13C NMR (CDCl3,
TMS, 75 MHz): d¼11.9, 21.0, 27.4, 45.5, 110.5, 115.1, 118.9,
118.9, 120.6, 127.0, 128.6, 129.4, 130.4, 135.5, 139.1, 160.2,
198.9; GC-MS: m/z¼51 (3), 75 (6), 91 (5), 111 (10), 130 (13),
139 (16), 158 (100), 191 (10), 207 (71), 253 (5), 281 (9), 311
(10); IR (nujol): n¼742 (m), 825 (m), 1012 (m), 1091 (s),
1283 (m), 1399 (m), 1437 (m), 1457 (s), 1588 (s), 1696 (s),
2853 (m), 2963 (m), 3055 (w), 3398 (br) cmꢀ1; anal. calcd. for
C19H18ClNO: C 73.19, H 5.82, N 4.49; found: C 73.16, H 5.78,
N, 4.48.
[6] Although extensive efforts have been devoted to the het-
erogenously catalysed synthesis of bis- and tris(indolyl)-
methanes, see: M. Chakrabarty, S. Sarkar, Tetrahedron
Lett. 2002, 43, 4075 4078; C. Ramesh, J. Banerjee, R.
Pal, B. Das, Adv. Synth. Catal. 2003, 345, 557 559; G.
Panieres-Carrillo, J. G. GarcÌa-Estrada, J. L. GutÌerrez-
RamÌrez, C. Alvarez-Toledano, Green. Chem. 2003, 5,
337 339, onlyfew examples of solid acids promoted
1,4-additions were reported, see: M. Chakrabarty, R. Ba-
sak, N. Ghosh, Tetrahedron Lett. 2001, 42, 3913 3915;
G. Bartoli; M. Bartolacci; M. Bosco; G. Foglia; A. Giulia-
ni; E. Marcantoni; L. Sambri; E. Torregiani; J. Org.
Chem. 2003, 68, 4594 4597.
Typical Experimental Semicontinuous Procedure
A preformed 0.1 M solution of 1 (2 mmol) and 2 (2 mmol) was
continuouslyintroduced in a glass column (15 mm diameter)
charged with 1 g of commerciallyavailable Amberlyst-15 dry.
When all the reactants solution was passed through the reactor
(0.9 mL/min), the reaction mixture was collected in a separate
flask and the solvent was recovered byevaporation and recy-
cled in the reactant-containing unit. Then, to guarantee a com-
plete recovering of the products, the reactor was washed with
20 mL of CH2Cl2 :EtOH (9:1) followed byrecycling the wash-
ing solvent as well. 1H NMR analysis of the crude residues af-
forded the conversions in 3: I cycle: 94%, II cycle: 90%, III cy-
cle: 89%, IV cycle: 90%, V cycle: 93%.
[7] Good yields were also obtained in the addition of differ-
ent indoles to 2: 1-methylindole (80%), 1,2-dimethylin-
dole (55%).
[8] Reaction times to complete conversion: I cycle 18 h, II
cycle 22 h, III cycle 26 h, IV cycle 28 h, V cycle 30 h.
[9] Recent examples of continuous solid acid-catalysed reac-
tions, see [hydrogenation]: M. G. Hitzler, M. Poliakoff,
Chem. Commun. 1997, 1667 1668; [FC]: M. G. Hitzler,
F. R. Smail, S. K. Ross, M. Poliakoff, Chem. Commun.
1998, 359 360; [dehydration of alcohols]: W. K. Gray,
F. R. Smail, M. G. Hitzler, S. K. Ross, M. Poliakoff, J.
Am. Chem. Soc. 1999, 121, 10711 10718.
[10] a) P. Tundo, Continuous Flow Methods in Organic Syn-
thesis, Prentice Hall PTR: Upper Side River, New
York, 1992; b) N. G. Anderson, Org. Process Res. Dev.
2001, 5, 613 621.
Acknowledgements
Acknowledgements are made to FIRB (™Progettazione, prepar-
azione e valutazione biologica e farmacologica di nuove molec-
ole organiche quali potenziali farmaci innovativi∫), CINMPIS
(Bari) and M. U. R. S. T. (Progetto Nazionale ™Stereoselezione
in Sintesi Organica: Metodologie ed Applicazioni∫) and Bolo-
gna University (funds for selected research topics) for the finan-
cial support of these research projects. M. F. thanks Consorzio
Spinner for a fellowship. Great Lakes Italia s.r.l. is acknowl-
edged for the generous gift of clays and ion exchange resins.
[11] Mass flow rate of reactant for mass of catalyst utilised in
the reactor.
[12] For an elegant studyon the environmental assessment of
organic reactions, see: M. Eissen, J. O. Metzger, Chem.
Eur. J. 2002, 8, 3580 3585.
References and Notes
[1] a) K. Wilson, J. H. Clark, Pure Appl. Chem. 2000, 72,
1313 1319; b) T. Okuhara, Chem. Rev. 2002, 102, 3641
3666; c) J. H. Clark, Acc. Chem. Res. 2002, 35, 791 797.
548
¹ 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
Adv. Synth. Catal. 2004, 346, 545 548