C. Zhang et al. / Tetrahedron Letters 49 (2008) 6917–6920
6919
nition motif in preparing other threaded structures, and the results
will be reported in due course.
Acknowledgments
This work was supported by the National Natural Science Foun-
dation of China (20604020 and 20774086). We thank Professor
Wanzhi Chen from Department of Chemistry at Zhejiang Univer-
sity for his kind assistance with X-ray crystallography.
Supplementary data
Synthetic procedures, characterizations, determination of asso-
ciation constants of P21C7Á1, P21C7Á2, and P21C7Á3, and crystal
data for rotaxane 7. Supplementary data associated with this arti-
References and notes
1. Reviews: (a) Amabilino, D. B.; Stoddart, J. F. Chem. Rev. 1995, 95, 2725–2828;
(b) Raymo, F. M.; Stoddart, J. F. Chem. Rev. 1999, 99, 1643–1663; (c) Huang, F.;
Gibson, H. W. Prog. Polym. Sci. 2005, 30, 982–1018; (d) Kay, E. R.; Leigh, D. A.;
Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46, 72–191; (e) Lankshear, M. D.; Beer,
P. D. Acc. Chem. Res. 2007, 40, 657–668.
Figure 2. Partial 1H NMR spectra (500 MHz, DMSO-d6, 22 °C) of dumbbell-shaped
component 6 (a), rotaxane 7 (b), and P21C7 (c).
2. Selected publications: (a) Ashton, P. R.; Chrystal, E. J. T.; Glink, P.; Menzer, T. S.;
Schiavo, C.; Spencer, N.; Stoddart, J. F.; Tasker, P. A.; White, A. J. P.; Williams, D.
J. Chem. Eur. J. 1996, 2, 709–728; (b) Ashton, P. R.; Fyfe, M. C. T.; Schiavo, C.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J. Tetrahedron Lett. 1998, 39, 5455–
5458; (c) Cantrill, S. J.; Fyfe, M. C. T.; Heiss, A. M.; Stoddart, J. F.; White, A. J. P.;
Williams, D. J. Org. Lett. 2000, 2, 61–64; (d) Glink, P. T.; Oliva, A. I.; Stoddart, J.
F.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 2001, 40, 1870–1875; (e)
Huang, F.; Jones, J. W.; Slebodnick, C.; Gibson, H. W. J. Am. Chem. Soc. 2003, 125,
14458–14464; (f) Tachibana, Y.; Kihara, N.; Furusho, Y.; Takata, T. Org. Lett.
2004, 6, 4507–4509; (g) Loeb, S. J.; Tiburcio, J.; Vella, S. J. Org. Lett. 2005, 7,
4923–4926; (h) Dichtel, W. R.; Miljanic, O. S.; Spruell, J. M.; Heath, J. R.;
Stoddart, J. F. J. Am. Chem. Soc. 2006, 128, 10388–10390; (i) Chiu, C.-W.; Lai, C.-
C.; Chiu, S.-H. J. Am. Chem. Soc. 2007, 129, 3500–3501; (j) Han, T.; Zong, Q.-S.;
Chen, C.-F. J. Org. Chem. 2007, 72, 3108–3111; (k) Li, L.; Clarkson, G. J. Org. Lett.
2007, 9, 497–500; (l) Illescas, B. M.; Santos, J.; Díaz, M. C.; Martín, N.; Atienza, C.
M.; Guldi, D. M. Eur. J. Org. Chem. 2007, 5027–5037; (m) Huang, F.; Jones, J. W.;
Gibson, H. W. J. Org. Chem. 2007, 72, 6573–6576; (n) Coutrot, F.; Busseron, E.;
Montero, J.-L. Org. Lett. 2008, 10, 753–756; (o) Hirose, K.; Shiba, Y.; Ishibashi, K.;
Doi, Y.; Tobe, Y. Chem. Eur. J. 2008, 14, 3427–3433.
3. Zhang, C.; Li, S.; Zhang, J.; Zhu, K.; Li, N.; Huang, F. Org. Lett. 2007, 9, 5553–5556.
4. (a) Ashton, P. R.; Baxter, I.; Cantrill, S. J.; Fyfe, M. C. T.; Glink, P. T.; Stoddart, J. F.;
White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1998, 37, 1294–1297; (b)
Chang, T.; Heiss, A. M.; Cantrill, S. J.; Fyfe, M. C. T.; Pease, A. R.; Rowan, S. J.;
Stoddart, J. F.; White, A. J. P.; Williams, D. J. Org. Lett. 2000, 2, 2947–2950; (c)
Gibson, H. W.; Wang, H.; Bonrad, K.; Jones, J. W.; Slebodnick, C.; Zackharov, L.
N.; Rheingold, A. L.; Habenicht, B.; Lobue, P.; Ratliff, A. E. Org. Biomol. Chem.
2005, 3, 2114–2121; (d) Gibson, H. W.; Wang, H.; Slebodnick, C.; Merola, J.;
Kassel, W. S.; Rheingold, A. L. J. Org. Chem. 2007, 72, 3381–3393.
Figure 3. Crystal structure of the [2]rotaxane 7. A PF6 counterion, and hydrogens
except the ones involved in hydrogen bonding have been omitted for clarity. P21C7
is red, 6 is blue, hydrogens are magenta, oxygens are green, and nitrogen is black.
Hydrogen-bond parameters: HÁÁÁO distances (Å), C(N)–HÁÁÁO(N) angles (°),
C(N)ÁÁÁO(N) distances (Å) A, 2.18, 161, 3.04; B, 2.61, 140, 3.41; C, 2.51, 143, 3.33;
D, 2.37, 161, 3.30; E, 2.00, 168, 2.89; F, 2.69, 95, 2.91; G, 2.30, 124, 2.91.
5. (a) Ashton, P. R.; Bartsch, R. A.; Cantrill, S. J.; Hanes, R. E., Jr.; Hickingbottom, S.
K.; Lowe, J. N.; Preece, J. A.; Stoddart, J. F.; Talanov, V. S.; Wang, Z.-H.
Tetrahedron Lett. 1999, 40, 3661–3664; (b) Cantrill, S. J.; Fulton, D. A.; Heiss, A.
M.; Pease, A. R.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 2000, 6,
2274–2287; (c) Chiu, S.-H.; Rowan, S. J.; Cantrill, S. J.; Glink, P. T.; Garrell, R. L.;
Stoddart, J. F. Org. Lett. 2000, 2, 3631–3634.
6. (a) Nagvekar, D. S.; Gibson, H. W. Can. J. Chem. 1997, 75, 1375–1384; (b)
Nagvekar, D. S.; Yamaguchi, N.; Wang, F.; Bryant, W. S.; Gibson, H. W. J. Org.
Chem. 1997, 62, 4798–4803; (c) Bryant, W. S.; Guzei, I. A.; Rheingold, A. L.;
Merola, J. S.; Gibson, H. W. J. Org. Chem. 1998, 63, 7634–7639.
7. Czekalla, M.; Stephan, H.; Habermann, B.; Trepte, J.; Gloe, K.; Schmidtchen, F. P.
Thermochim. Acta 1998, 313, 137–144.
8. P21C7 was originally prepared for the purpose of studying the complexation
with guanidinium salts by using two-phase extraction experiments. See:
Uiterwijk, J. W. H. M.; Staveren, Van C. J.; Reinhoudt, D. N.; Den Hertog, H. J. Jr.;
Kruise, L.; Harkema, S. J. Org. Chem. 1986, 51, 1575–1587.
(Fig. 3), indicating that although both P21C7 and B21C7 are 21-
membered rings, P21C7 has a slightly bigger cavity than B21C7.
This is in accordance with that the cavity of DP24C8 is bigger than
that of DB24C8 so DP24C8Á4 is a fast-exchange system while
DB24C8Á4 is a slow-exchange system at room temperature.2a,3,4b
In summary, here we have demonstrated that P21C7 can bind
widely used secondary dialkylammonium salt guests more
strongly than B21C7 and much more strongly than DB24C8.
Therefore, P21C7 is an attractive alternative for DB24C8, the tradi-
tionally used host for the secondary dialkylammonium salts. Fur-
thermore, P21C7-based [2]pseudorotaxane- and [2]rotaxane-type
threaded structures have been successfully prepared. Considering
the high association constants of the complexes based on P21C7
and secondary dialkylammonium salts (such as 1–3) and the sym-
metric nature of the P21C7 derivatives resulted from the substitu-
tion at the C-4 position of its pyrido ring,4b P21C7 should be a
versatile macrocyclic host for secondary dialkylammonium salts
in the preparation of threaded structures. Currently, we are using
the pyridine-21-crown-7/secondary dialkylammonium salt recog-
9. Connors, K. A. Binding Constants; Wiley: New York, 1987.
10. The Ka values of P21C7-based complexes, slow-exchange complexation
systems, were calculated from integrations of complexed and uncomplexed
peaks. All these Ka values are at 1.00 mM host and guest in acetone-d6.
11. Rowan, S. J.; Cantrill, S. J.; Stoddart, J. F. Org. Lett. 1999, 1, 129–132.
12. Tachibana, Y.; Kawasaki, H.; Kihara, N.; Takata, T. J. Org. Chem. 2006, 71, 5093–
5104.
13. Crystal data of 7: Prism, colorless, 0.80 Â 0.56 Â 0.46 mm3, C36H51N2O8F6P, FW
784.76, monoclinic, space group P21/c, a = 11.494(2), b = 16.863(3),
c = 23.019(7) Å,
a
= 90.00°, b = 114.94(2)°,
= 0.145 mmÀ1, 30,972 measured reflections,
c
= 90.00°, V = 4045.6(16) Å3, Z = 4,
Dc = 1.288 g cmÀ3, T = 100(2) K,
l