C. Zhou et al. / Bioorg. Med. Chem. Lett. 18 (2008) 1308–1311
1311
15. Giacomelli, G.; Porcheddu, A.; De Luca, L. Curr. Org.
Chem. 2004, 8, 1497.
as antimicrobials. Several lead compounds possessing
potent antimicrobial and low hemolytic activity were
identified. Further, these compounds preferentially kill
Gram-positive bacteria relative to gram-negative ones
and probably kill them via disrupting membrane integ-
rity as shown by a dye leakage assay. These responses
are similar to those of most natural or synthetic AMPs
reported in the literature. These data open a possible
route to the elaboration of novel antibiotics derived
from AMP mimetics that afford more drug-like pharma-
ceutical properties than peptides. Further investigation
on the mechanism of these triazine compounds will be
needed to distinguish their mode of action from that
of other triazine compounds.
16. Silen, J. L.; Lu, A. T.; Solas, D. W.; Gore, M. A.;
Maclean, D.; Shah, N. H.; Coffin, J. M.; Bhinderwala, N.
S.; Wang, Y.-W.; Tsutsui, K. T.; Look, G. C.; Campbell,
D. A.; Hale, R. L.; Navre, M.; Deluca-Flaherty, C.
Antimicrob. Agents Chemother. 1998, 42, 1447.
17. Min, J.; Kim, Y. K.; Cipriani, P. G.; Kang, M.;
Khersonsky, S. M.; Walsh, D. P.; Lee, J. Y.; Niessen, S.;
Yates, J. R.; Gunsalus, K.; Piano, F.; Chang, Y. T. Nat.
Chem. Biol. 2007, 3, 55.
18. Uttamchandani, M.; Walsh, D. P.; Khersonsky, S. M.;
Huang, X.; Yao, S. Q.; Chang, Y. T. J. Comb. Chem.
2004, 6, 862.
19. Frequency of functional group effectiveness from libraries
1 and 2. The number of occurrences of the top eight side
chain groups in triazines at 100 lM versus B. subtilis
(>90% inhibition): functional group B(four times), C(3),
F(4), H(3), 11(6), 13(3), 15(3), and 17(4). These functional
groups were used to design library 3.
Acknowledgments
20. Assay results of screening library 3. Triazine compounds:
B11(IC50
This work was supported by a grant from ONR
(N00014-03-1-0129). We acknowledge the NCRR/NIH
for a Research Facilities Improvement Grant (C06
RR-16572) at NYU. The authors thank Brian Rasimick
for helpful discussions.
7.5 lm),
C11(2.5 lm),
C15(7.5 lm),
11–
H11(7.5 lm),
H15(3.0 lm),
11–11(7.5 lm),
15(7.5 lm), and 11–17(7.5 lm). All these compounds
cause less than 10% hemolysis at 100 lM.
21. The purity and identity of all the products were monitored
by LC–MS at 250 nm (Agilent 1100) and more than 90%
of the compounds demonstrated >90% purity. NMR and
1
References and notes
ESI-MS characterization data for example: C11 H NMR
(400 MHz, CDCl3): d 4.81 (br, 2H), 3.96 (brs, 1H), 3.42
(m, 2H), 2.67 (m, 1H), 2.57 (m, 4H), 2.10 (m, 8H), 1.99 (m,
2H), 1.83 (m, 3H), 1.69–1.45 (m, 22H), 1.34 (m, 4H), 0.93
(t, 6H, J = 7.5 Hz). ESI-MS (M+H)+ calcd, 526.4; Found,
526.2. Data for TZ-4: 1H NMR (400 MHz, CDCl3): d 4.79
(br, 2H), 4.02 (brs, 1H), 3.41 (m, 2H), 2.61 (m, 1H), 2.50
(t, 4H, J = 6.8 Hz), 2.10 (m, 8H), 1.88 (m, 2H), 1.78 (m,
3H), 1.68–1.46 (m, 24H), 1.32 (m, 4H), 0.92 (t, 6H,
J = 7.3 Hz). ESI-MS (M+H)+ calcd, 540.4; Found, 540.2.
Data for TZ-12: 1H NMR (400 MHz, CDCl3): d 7.29–7.13
(m, 6H), 4.70 (br, 2H), 3.52 (m, 2H), 3.33 (m, 2H), 2.78 (m,
2H), 2.54 (m, 6H), 2.02 (m, 8H), 1.70 (m, 3H), 1.60 (m,
6H), 1.02 (t, 6H, J = 6.8 Hz). ESI-MS (M+H)+ calcd,
478.3; Found, 478.1.
1. Zasloff, M. Nature 2002, 415, 389.
2. Boman, H. G. J. Intern. Med. 2003, 254, 197.
3. Hancock, R. E. W. Nat. Rev. Drug Discov. 2007, 6, 28.
4. Hancock, R. E. W.; Sahl, H. G. Nat. Biotechnol. 2006, 24,
1551.
5. Yeaman, M. R.; Yount, N. Y. Pharmacol. Rev. 2003, 55,
27.
6. Staubitz, P.; Peschel, A.; Nieuwenhuizen, W. F.; Otto, M.;
Gotz, F.; Jung, G.; Jack, R. W. J. Pept. Sci. 2001, 7, 552.
7. Strom, M. B.; Haug, B. E.; Skar, M. L.; Stensen, W.;
Stiberg, T.; Svendsen, J. S. J. Med. Chem. 2003, 46, 1567.
8. Haug, B. E.; Stensen, W.; Stiberg, T.; Svendsen, J. S. J.
Med. Chem. 2004, 47, 4159.
22. Growth inhibition and hemolysis assays here and men-
tioned above were carried out using a microdilution
method as previously described in Ref. 9. Bacterial strain:
A. baumannii (ATCC BAA-747; Rockville, MD); B.
subtilis (ATCC 6633; Rockville, MD); Ampicillin- and
streptomycin-resistant strain E. coli (D31; E. coli Genetic
Resource Center, Yale University, New Haven, CT);
multi-drug resistant strain S. aureus (ATCC BAA-44); B.
anthracis (32F2 Sterne) (gift from Dr. Martin Blaser,
NYU medical school).
23. The method of preparation of dye-encapsulated vesicles
has been reported in detail: Lasch, V.; Weissig, M. In Bran
in Liposomes: a Practical Approach; Taylor, K. M. G.,
Craig, D. Q. M., Eds.; Oxford University Press: Oxford,
2003; p 10.
9. Liu, Z.; Brady, A.; Young, A.; Rasimick, B.; Chen, K.;
Zhou, C.; Kallenbach, N. R. Antimicrob. Agents Chemo-
ther. 2007, 51, 597.
10. Porter, E. A.; Wang, X.; Lee, H. S.; Weisblum, B.;
Gellman, S. H. Nature 2000, 404, 565.
11. Fernandez-Lopez, S.; Kim, H. S.; Choi, E. C.; Delgado,
M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.;
Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri,
M. R. Nature 2001, 412, 452.
12. Patch, J. A.; Barron, A. E. J. Am. Chem. Soc. 2003, 125,
12092.
13. Liu, Z.; Young, A. W.; Hu, P.; Rice, A. J.; Zhou, C.;
Zhang, Y.; Kallenbach, N. R. Chembiochem 2007.
14. Walsh, D. P.; Chang, Y. T. Chem. Rev. 2006, 106, 2476.